Articles producció científica> Enginyeria Informàtica i Matemàtiques

On the number of vertices of projective polytopes

  • Dades identificatives

    Identificador: imarina:9295555
    Autors:
    Garcia-Colin, NMontejano, LPAlfonsin, JLR
    Resum:
    Let X be a set of n points in Rd$\mathbb {R}<^>d$ in general position. What is the maximum number of vertices that conv(T(X))$\mathsf {conv}(T(X))$ can have among all the possible permissible projective transformations T? In this paper, we investigate this and other related questions. After presenting several upper bounds, obtained by using oriented matroid machinery, we study a closely related problem (via Gale transforms) concerning the maximal number of minimal Radon partitions of a set of points. The latter led us to a result supporting a positive answer to a question of Pach and Szegedy asking whether balanced 2-colorings of points in the plane maximize the number of induced multicolored Radon partitions. We also discuss a related problem concerning the size of topes in arrangements of hyperplanes as well as a tolerance-type problem of finite sets.
  • Altres:

    Autor segons l'article: Garcia-Colin, N; Montejano, LP; Alfonsin, JLR
    Departament: Enginyeria Informàtica i Matemàtiques
    Autor/s de la URV: Montejano Cantoral, Luis Pedro
    Paraules clau: Proof Cells Arrangements
    Resum: Let X be a set of n points in Rd$\mathbb {R}<^>d$ in general position. What is the maximum number of vertices that conv(T(X))$\mathsf {conv}(T(X))$ can have among all the possible permissible projective transformations T? In this paper, we investigate this and other related questions. After presenting several upper bounds, obtained by using oriented matroid machinery, we study a closely related problem (via Gale transforms) concerning the maximal number of minimal Radon partitions of a set of points. The latter led us to a result supporting a positive answer to a question of Pach and Szegedy asking whether balanced 2-colorings of points in the plane maximize the number of induced multicolored Radon partitions. We also discuss a related problem concerning the size of topes in arrangements of hyperplanes as well as a tolerance-type problem of finite sets.
    Àrees temàtiques: Mathematics, applied Mathematics (miscellaneous) Mathematics (all) Mathematics General mathematics
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: luispedro.montejano@urv.cat
    Data d'alta del registre: 2024-08-03
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Enllaç font original: https://londmathsoc.onlinelibrary.wiley.com/doi/full/10.1112/mtk.12193
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referència a l'article segons font original: Mathematika. 69 (2): 535-561
    Referència de l'ítem segons les normes APA: Garcia-Colin, N; Montejano, LP; Alfonsin, JLR (2023). On the number of vertices of projective polytopes. Mathematika, 69(2), 535-561. DOI: 10.1112/mtk.12193
    DOI de l'article: 10.1112/mtk.12193
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2023
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Mathematics,Mathematics (Miscellaneous),Mathematics, Applied
    Proof
    Cells
    Arrangements
    Mathematics, applied
    Mathematics (miscellaneous)
    Mathematics (all)
    Mathematics
    General mathematics
  • Documents:

  • Cerca a google

    Search to google scholar