Articles producció científica> Ciències Mèdiques Bàsiques

Combined Intake of Fish Oil and D-Fagomine Prevents High-Fat High-Sucrose Diet-Induced Prediabetes by Modulating Lipotoxicity and Protein Carbonylation in the Kidney

  • Dades identificatives

    Identificador: imarina:9295558
    Autors:
    Méndez, LMuñoz, SBarros, LMiralles-Pérez, BRomeu, MRamos-Romero, STorres, JLMedina, I
    Resum:
    Obesity has been recognized as a major risk factor for chronic kidney disease, insulin resistance being an early common metabolic feature in patients suffering from this syndrome. This study aims to investigate the mechanism underlying the induction of kidney dysfunction and the concomitant onset of insulin resistance by long-term high-fat and sucrose diet feeding in Sprague Dawley rats. To achieve this goal, our study analyzed renal carbonylated protein patterns, ectopic lipid accumulation and fatty acid profiles and correlated them with biometrical and biochemical measurements and other body redox status parameters. Rats fed the obesogenic diet developed a prediabetic state and incipient kidney dysfunction manifested in increased plasma urea concentration and superior levels of renal fat deposition and protein carbonylation. An obesogenic diet increased renal fat by preferentially promoting the accumulation of saturated fat, arachidonic, and docosahexaenoic fatty acids while decreasing oleic acid. Renal lipotoxicity was accompanied by selectively higher carbonylation of proteins involved in the blood pH regulation, i.e., bicarbonate reclamation and synthesis, amino acid, and glucose metabolisms, directly related to the onset of insulin resistance. This study also tested the combination of antioxidant properties of fish oil with the anti-diabetic properties of buckwheat D-Fagomine to counteract diet-induced renal alterations. Results demonstrated that bioactive compounds combined attenuated lipotoxicity, induced more favorable lipid profiles and counteracted the excessive carbonylation of proteins associated with pH regulation in the kidneys, resulting in an inhibition of the progression of the prediabetes state and kidney disease.
  • Altres:

    Autor segons l'article: Méndez, L; Muñoz, S; Barros, L; Miralles-Pérez, B; Romeu, M; Ramos-Romero, S; Torres, JL; Medina, I
    Departament: Ciències Mèdiques Bàsiques
    Autor/s de la URV: Miralles Pérez, Bernat / Romeu Ferran, Marta
    Paraules clau: Rats Oxidative stress Omega-3 pufas Marine omega-3 pufas Marine natural antioxidants Liver Lipid-peroxidation Kidney protein carbonylation Kidney lipotoxicity Ketamine Insulin-resistance Inflammation High-fat and high-sucrose diet Grape proanthocyanidins D-fagomine Combination
    Resum: Obesity has been recognized as a major risk factor for chronic kidney disease, insulin resistance being an early common metabolic feature in patients suffering from this syndrome. This study aims to investigate the mechanism underlying the induction of kidney dysfunction and the concomitant onset of insulin resistance by long-term high-fat and sucrose diet feeding in Sprague Dawley rats. To achieve this goal, our study analyzed renal carbonylated protein patterns, ectopic lipid accumulation and fatty acid profiles and correlated them with biometrical and biochemical measurements and other body redox status parameters. Rats fed the obesogenic diet developed a prediabetic state and incipient kidney dysfunction manifested in increased plasma urea concentration and superior levels of renal fat deposition and protein carbonylation. An obesogenic diet increased renal fat by preferentially promoting the accumulation of saturated fat, arachidonic, and docosahexaenoic fatty acids while decreasing oleic acid. Renal lipotoxicity was accompanied by selectively higher carbonylation of proteins involved in the blood pH regulation, i.e., bicarbonate reclamation and synthesis, amino acid, and glucose metabolisms, directly related to the onset of insulin resistance. This study also tested the combination of antioxidant properties of fish oil with the anti-diabetic properties of buckwheat D-Fagomine to counteract diet-induced renal alterations. Results demonstrated that bioactive compounds combined attenuated lipotoxicity, induced more favorable lipid profiles and counteracted the excessive carbonylation of proteins associated with pH regulation in the kidneys, resulting in an inhibition of the progression of the prediabetes state and kidney disease.
    Àrees temàtiques: Química Physiology Molecular biology Medicina ii Medicina i Interdisciplinar Food science & technology Food science Farmacia Engenharias ii Clinical biochemistry Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Chemistry, medicinal Cell biology Biotecnología Biodiversidade Biochemistry & molecular biology Biochemistry
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: bernat.miralles@urv.cat marta.romeu@urv.cat
    Identificador de l'autor: 0000-0003-1294-7069 0000-0002-2131-1858
    Data d'alta del registre: 2024-08-03
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Enllaç font original: https://www.mdpi.com/2076-3921/12/3/751
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referència a l'article segons font original: Antioxidants. 12 (3):
    Referència de l'ítem segons les normes APA: Méndez, L; Muñoz, S; Barros, L; Miralles-Pérez, B; Romeu, M; Ramos-Romero, S; Torres, JL; Medina, I (2023). Combined Intake of Fish Oil and D-Fagomine Prevents High-Fat High-Sucrose Diet-Induced Prediabetes by Modulating Lipotoxicity and Protein Carbonylation in the Kidney. Antioxidants, 12(3), -. DOI: 10.3390/antiox12030751
    DOI de l'article: 10.3390/antiox12030751
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2023
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Biochemistry,Biochemistry & Molecular Biology,Cell Biology,Chemistry, Medicinal,Clinical Biochemistry,Food Science,Food Science & Technology,Molecular Biology,Physiology
    Rats
    Oxidative stress
    Omega-3 pufas
    Marine omega-3 pufas
    Marine natural antioxidants
    Liver
    Lipid-peroxidation
    Kidney protein carbonylation
    Kidney lipotoxicity
    Ketamine
    Insulin-resistance
    Inflammation
    High-fat and high-sucrose diet
    Grape proanthocyanidins
    D-fagomine
    Combination
    Química
    Physiology
    Molecular biology
    Medicina ii
    Medicina i
    Interdisciplinar
    Food science & technology
    Food science
    Farmacia
    Engenharias ii
    Clinical biochemistry
    Ciências biológicas ii
    Ciências biológicas i
    Ciências ambientais
    Ciências agrárias i
    Ciência de alimentos
    Chemistry, medicinal
    Cell biology
    Biotecnología
    Biodiversidade
    Biochemistry & molecular biology
    Biochemistry
  • Documents:

  • Cerca a google

    Search to google scholar