Articles producció científica> Enginyeria Informàtica i Matemàtiques

Computing the k-metric dimension of graphs

  • Dades identificatives

    Identificador: imarina:9295801
    Autors:
    Yero, Ismael GEstrada-Moreno, AlejandroRodriguez-Velazquez, Juan A
    Resum:
    Given a connected graph G = (V, E), a set S subset of V is a k-metric generator for G if for any two different vertices u, v is an element of V, there exist at least k vertices w(1), ... ,W-k is an element of S such that d(G)(u, w(i)) not equal d(G) (v, w(i)) for every i is an element of {1, ... , k}. A metric generator of minimum cardinality is called a k-metric basis and its cardinality the k-metric dimension of G. We make a study concerning the complexity of some k-metric dimension problems. For instance, we show that the problem of computing the k-metric dimension of graphs is NP-hard. However, the problem is solved in linear time for the particular case of trees. (C) 2016 Elsevier Inc. All rights reserved.
  • Altres:

    Autor segons l'article: Yero, Ismael G; Estrada-Moreno, Alejandro; Rodriguez-Velazquez, Juan A
    Departament: Enginyeria Informàtica i Matemàtiques
    Autor/s de la URV: Estrada Moreno, Alejandro / GONZÁLEZ YERO, ISMAEL / Rodríguez Velázquez, Juan Alberto
    Paraules clau: Product Np-hard problem Np-complete problem Metric dimension Landmarks K-metric dimensional graph K-metric dimension Graph algorithms
    Resum: Given a connected graph G = (V, E), a set S subset of V is a k-metric generator for G if for any two different vertices u, v is an element of V, there exist at least k vertices w(1), ... ,W-k is an element of S such that d(G)(u, w(i)) not equal d(G) (v, w(i)) for every i is an element of {1, ... , k}. A metric generator of minimum cardinality is called a k-metric basis and its cardinality the k-metric dimension of G. We make a study concerning the complexity of some k-metric dimension problems. For instance, we show that the problem of computing the k-metric dimension of graphs is NP-hard. However, the problem is solved in linear time for the particular case of trees. (C) 2016 Elsevier Inc. All rights reserved.
    Àrees temàtiques: Saúde coletiva Química Nutrição Medicina iii Medicina ii Mathematics, applied Materiais Matemática / probabilidade e estatística Interdisciplinar Geociências Filosofia/teologia:subcomissão filosofia Ensino Engenharias iv Engenharias iii Engenharias ii Engenharias i Computational mathematics Ciências biológicas iii Ciências biológicas ii Ciências ambientais Ciências agrárias i Ciência da computação Biodiversidade Astronomia / física Arquitetura, urbanismo e design Applied mathematics
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: alejandro.estrada@urv.cat juanalberto.rodriguez@urv.cat
    Identificador de l'autor: 0000-0001-9767-2177 0000-0002-9082-7647
    Data d'alta del registre: 2024-10-26
    Versió de l'article dipositat: info:eu-repo/semantics/acceptedVersion
    Enllaç font original: https://www.sciencedirect.com/science/article/abs/pii/S0096300316307317
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referència a l'article segons font original: Applied Mathematics And Computation. 300 60-69
    Referència de l'ítem segons les normes APA: Yero, Ismael G; Estrada-Moreno, Alejandro; Rodriguez-Velazquez, Juan A (2017). Computing the k-metric dimension of graphs. Applied Mathematics And Computation, 300(), 60-69. DOI: 10.1016/j.amc.2016.12.005
    DOI de l'article: 10.1016/j.amc.2016.12.005
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2017
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Applied Mathematics,Computational Mathematics,Mathematics, Applied
    Product
    Np-hard problem
    Np-complete problem
    Metric dimension
    Landmarks
    K-metric dimensional graph
    K-metric dimension
    Graph algorithms
    Saúde coletiva
    Química
    Nutrição
    Medicina iii
    Medicina ii
    Mathematics, applied
    Materiais
    Matemática / probabilidade e estatística
    Interdisciplinar
    Geociências
    Filosofia/teologia:subcomissão filosofia
    Ensino
    Engenharias iv
    Engenharias iii
    Engenharias ii
    Engenharias i
    Computational mathematics
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências ambientais
    Ciências agrárias i
    Ciência da computação
    Biodiversidade
    Astronomia / física
    Arquitetura, urbanismo e design
    Applied mathematics
  • Documents:

  • Cerca a google

    Search to google scholar