Articles producció científica> Enginyeria Mecànica

Use of operational research techniques for concrete mix design: A systematic review

  • Dades identificatives

    Identificador: imarina:9296449
    Autors:
    Rosa, ACHammad, AWABoer, DHaddad, A
    Resum:
    Traditional methods for designing concrete mixtures provide good results; however, they do not guarantee the optimum composition. Consequently, applying operational research techniques is motivated by an increasing need for designers to proportion the concrete's raw materials that satisfy the concrete performance requirements such as mechanical properties, chemical properties, workability, sustainability, and cost. For this reason, many authors have been looking for mathematical programming and machine learning solutions to predict concrete mix properties and optimise concrete mixtures. Therefore, a comprehensive review of operational research techniques concerning the design and proportioning of concrete mixtures and a classification framework are presented herein.
  • Altres:

    Autor segons l'article: Rosa, AC; Hammad, AWA; Boer, D; Haddad, A
    Departament: Enginyeria Mecànica
    Autor/s de la URV: Boer, Dieter-Thomas
    Paraules clau: Optimisation Mathematical programming Machine learning Concrete mix design Artificial neural-network sustainable concrete silica fume self-consolidating concrete optimisation mechanical-properties mathematical programming fly-ash elastic-modulus concrete mix design compressive strength prediction carbonation depth autogenous shrinkage
    Resum: Traditional methods for designing concrete mixtures provide good results; however, they do not guarantee the optimum composition. Consequently, applying operational research techniques is motivated by an increasing need for designers to proportion the concrete's raw materials that satisfy the concrete performance requirements such as mechanical properties, chemical properties, workability, sustainability, and cost. For this reason, many authors have been looking for mathematical programming and machine learning solutions to predict concrete mix properties and optimise concrete mixtures. Therefore, a comprehensive review of operational research techniques concerning the design and proportioning of concrete mixtures and a classification framework are presented herein.
    Àrees temàtiques: Multidisciplinary sciences Multidisciplinary Medicina i Ciências biológicas ii Ciências biológicas i Biotecnología
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: dieter.boer@urv.cat
    Identificador de l'autor: 0000-0002-5532-6409
    Data d'alta del registre: 2024-08-03
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Enllaç font original: https://www.sciencedirect.com/science/article/pii/S2405844023025690
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referència a l'article segons font original: Heliyon. 9 (4):
    Referència de l'ítem segons les normes APA: Rosa, AC; Hammad, AWA; Boer, D; Haddad, A (2023). Use of operational research techniques for concrete mix design: A systematic review. Heliyon, 9(4), -. DOI: 10.1016/j.heliyon.2023.e15362
    DOI de l'article: 10.1016/j.heliyon.2023.e15362
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2023
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Multidisciplinary,Multidisciplinary Sciences
    Optimisation
    Mathematical programming
    Machine learning
    Concrete mix design
    Artificial neural-network
    sustainable concrete
    silica fume
    self-consolidating concrete
    optimisation
    mechanical-properties
    mathematical programming
    fly-ash
    elastic-modulus
    concrete mix design
    compressive strength prediction
    carbonation depth
    autogenous shrinkage
    Multidisciplinary sciences
    Multidisciplinary
    Medicina i
    Ciências biológicas ii
    Ciências biológicas i
    Biotecnología
  • Documents:

  • Cerca a google

    Search to google scholar