Articles producció científica> Enginyeria Mecànica

Numerical simulations of the flow and aerosol dispersion in a violent expiratory event: Outcomes of the 2022 International Computational Fluid Dynamics Challenge on violent expiratory events

  • Dades identificatives

    Identificador: imarina:9296455
    Autors:
    Pallares, JFabregat, ALavrinenko, Abin Norshamsudin, HAJaniga, GFletcher, DFInthavong, KZasimova, MRis, VIvanov, NCastilla, RGamez-Montero, PJRaush, GCalmet, HMira, DWedel, JStrakl, MRavnik, JFontes, Dde Souza, FJMarchioli, CCito, S
    Resum:
    This paper presents and discusses the results of the 2022 International Computational Fluid Dynamics Challenge on violent expiratory eventsaimed at assessing the ability of different computational codes and turbulence models to reproduce the flow generated by a rapid prototypical exhalation and the dispersion of the aerosol cloud it produces. Given a common flow configuration, a total of 7 research teams from different countries have performed a total of 11 numerical simulations of the flow dispersion by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) or using the Large-Eddy Simulations (LES) or hybrid (URANS-LES) techniques. The results of each team have been compared with each other and assessed against a Direct Numerical Simulation (DNS) of the exact same flow. The DNS results are used as reference solution to determine the deviation of each modeling approach. The dispersion of both evaporative and non-evaporative particle clouds has been considered in 12 simulations using URANS and LES. Most of the models predict reasonably well the shape and the horizontal and vertical ranges of the buoyant thermal cloud generated by the warm exhalation into an initially quiescent colder ambient. However, the vertical turbulent mixing is generally underpredicted, especially by the URANS-based simulations, independently of the specific turbulence model used (and only to a lesser extent by LES). In comparison to DNS, both approaches are found to overpredict the horizontal range covered by the small particle cloud that tends to remain afloat within the thermal cloud well after the flow injection has ceased.
  • Altres:

    Autor segons l'article: Pallares, J; Fabregat, A; Lavrinenko, A; bin Norshamsudin, HA; Janiga, G; Fletcher, DF; Inthavong, K; Zasimova, M; Ris, V; Ivanov, N; Castilla, R; Gamez-Montero, PJ; Raush, G; Calmet, H; Mira, D; Wedel, J; Strakl, M; Ravnik, J; Fontes, D; de Souza, FJ; Marchioli, C; Cito, S
    Departament: Enginyeria Mecànica
    Autor/s de la URV: Cito, Salvatore / Fabregat Tomàs, Alexandre / Lavrinenko, Akim / Pallarés Curto, Jorge María
    Paraules clau: Jet
    Resum: This paper presents and discusses the results of the 2022 International Computational Fluid Dynamics Challenge on violent expiratory eventsaimed at assessing the ability of different computational codes and turbulence models to reproduce the flow generated by a rapid prototypical exhalation and the dispersion of the aerosol cloud it produces. Given a common flow configuration, a total of 7 research teams from different countries have performed a total of 11 numerical simulations of the flow dispersion by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) or using the Large-Eddy Simulations (LES) or hybrid (URANS-LES) techniques. The results of each team have been compared with each other and assessed against a Direct Numerical Simulation (DNS) of the exact same flow. The DNS results are used as reference solution to determine the deviation of each modeling approach. The dispersion of both evaporative and non-evaporative particle clouds has been considered in 12 simulations using URANS and LES. Most of the models predict reasonably well the shape and the horizontal and vertical ranges of the buoyant thermal cloud generated by the warm exhalation into an initially quiescent colder ambient. However, the vertical turbulent mixing is generally underpredicted, especially by the URANS-based simulations, independently of the specific turbulence model used (and only to a lesser extent by LES). In comparison to DNS, both approaches are found to overpredict the horizontal range covered by the small particle cloud that tends to remain afloat within the thermal cloud well after the flow injection has ceased.
    Àrees temàtiques: Química Physics, fluids & plasmas Mechanics of materials Mechanics Mechanical engineering Materiais Matemática / probabilidade e estatística Interdisciplinar Geociências Fluid flow and transfer processes Engineering (miscellaneous) Engenharias iv Engenharias iii Engenharias ii Engenharias i Condensed matter physics Computational mechanics Ciências biológicas i Ciência da computação Astronomia / física
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: akim.lavrinenko@urv.cat salvatore.cito@urv.cat alexandre.fabregat@urv.cat jordi.pallares@urv.cat
    Identificador de l'autor: 0000-0001-7626-3374 0000-0002-6032-2605 0000-0003-0305-2714
    Data d'alta del registre: 2024-08-03
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Enllaç font original: https://pubs.aip.org/aip/pof/article/35/4/045106/2883079/Numerical-simulations-of-the-flow-and-aerosol
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referència a l'article segons font original: Physics Of Fluids. 35 (4):
    Referència de l'ítem segons les normes APA: Pallares, J; Fabregat, A; Lavrinenko, A; bin Norshamsudin, HA; Janiga, G; Fletcher, DF; Inthavong, K; Zasimova, M; Ris, V; Ivanov, N; Castilla, R; Gam (2023). Numerical simulations of the flow and aerosol dispersion in a violent expiratory event: Outcomes of the 2022 International Computational Fluid Dynamics Challenge on violent expiratory events. Physics Of Fluids, 35(4), -. DOI: 10.1063/5.0143795
    DOI de l'article: 10.1063/5.0143795
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2023
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Computational Mechanics,Condensed Matter Physics,Engineering (Miscellaneous),Fluid Flow and Transfer Processes,Mechanical Engineering,Mechanics,Mechanics of Materials,Physics, Fluids & Plasmas
    Jet
    Química
    Physics, fluids & plasmas
    Mechanics of materials
    Mechanics
    Mechanical engineering
    Materiais
    Matemática / probabilidade e estatística
    Interdisciplinar
    Geociências
    Fluid flow and transfer processes
    Engineering (miscellaneous)
    Engenharias iv
    Engenharias iii
    Engenharias ii
    Engenharias i
    Condensed matter physics
    Computational mechanics
    Ciências biológicas i
    Ciência da computação
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar