Autor segons l'article: Bras-Amorós, M
Departament: Enginyeria Informàtica i Matemàtiques
Autor/s de la URV: Bras Amoros, Maria
Paraules clau: Conjecture
Resum: We present a revisit of the seeds algorithm to explore the semigroup tree. First, an equivalent definition of seed is presented, which seems easier to manage. Second, we determine the seeds of semigroups with at most three left elements. And third, we find the great-grandchildren of any numerical semigroup in terms of its seeds. The the right-generators descendant (RGD) algorithm is the fastest known algorithm at the moment. But if one compares the originary seeds algorithm with the RGD algorithm, one observes that the seeds algorithm uses more elaborated mathematical tools while the RGD algorithm uses data structures that are better adapted to the final C implementations. For genera up to around one half of the maximum size of native integers, the newly defined seeds algorithm performs significantly better than the RGD algorithm. For future compilators allowing larger native sized integers this may constitute a powerful tool to explore the semigroup tree up to genera never explored before. The new seeds algorithm uses bitwise integer operations, the knowledge of the seeds of semigroups with at most three left elements and of the great-grandchildren of any numerical semigroup, apart from techniques such as parallelization and depth first search as wisely introduced in this context by Fromentin and Hivert [Math. Comp. 85 (2016) pp. 2553-2568]. The algorithm has been used to prove that there are no Eliahou semigroups of genus 66, hence proving the Wilf conjecture for genus up to 66. We also found three Eliahou semigroups of genus 67. One of these semigroups is neither of Eliahou-Fromentin type, nor of Delgado's type. However, it is a member of a new family suggested by Shalom Eliahou.
Àrees temàtiques: Mathematics, applied Matemática / probabilidade e estatística Interdisciplinar Computational mathematics Ciência da computação Applied mathematics Algebra and number theory
Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
Adreça de correu electrònic de l'autor: maria.bras@urv.cat
Identificador de l'autor: 0000-0002-3481-004X
Data d'alta del registre: 2024-08-03
Versió de l'article dipositat: info:eu-repo/semantics/acceptedVersion
Enllaç font original: https://www.ams.org/journals/mcom/2024-93-345/S0025-5718-2023-03881-9/
URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
Referència a l'article segons font original: Mathematics Of Computation. 93 (345): 411-441
Referència de l'ítem segons les normes APA: Bras-Amorós, M (2024). ON THE SEEDS AND THE GREAT-GRANDCHILDREN OF A NUMERICAL SEMIGROUP. Mathematics Of Computation, 93(345), 411-441. DOI: 10.1090/mcom/3881
DOI de l'article: 10.1090/mcom/3881
Entitat: Universitat Rovira i Virgili
Any de publicació de la revista: 2024
Tipus de publicació: Journal Publications