Autor segons l'article: Gispert-Fernandez, Adria; Rodriuez-Velazquez, Juan Alberto
Departament: Enginyeria Informàtica i Matemàtiques
Autor/s de la URV: Rodríguez Velázquez, Juan Alberto
Paraules clau: Distance-equalizer Distances in graph Distances in graphs Equidistant dimension Lexicographic product Np-complete problem
Resum: Let V ( G ) be the vertex set of a simple and connected graph G . A subset S subset of V ( G ) is a distance -equalizer set of G if, for every pair of vertices u , v E V ( G ) \ S , there exists a vertex in S that is equidistant to u and v . The minimum cardinality among the distance -equalizer sets of G is the equidistant dimension of G , denoted by xi ( G ). In this paper, we studied the problem of finding xi ( G o H ), where G o H denotes the lexicographic product of two graphs G and H . The aim was to express xi ( G o H ) in terms of parameters of G and H . In particular, we considered the cases in which G has a domination number equal to one, as well as the cases where G is a path or a cycle, among others. Furthermore, we showed that xi ( G )
Àrees temàtiques: General mathematics Mathematics Mathematics (all) Mathematics (miscellaneous) Mathematics, applied
Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
Adreça de correu electrònic de l'autor: juanalberto.rodriguez@urv.cat
Identificador de l'autor: 0000-0002-9082-7647
Data d'alta del registre: 2024-10-26
Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
Referència a l'article segons font original: Aims Mathematics. 9 (6): 15325-15345
Referència de l'ítem segons les normes APA: Gispert-Fernandez, Adria; Rodriuez-Velazquez, Juan Alberto (2024). The equidistant dimension of graphs: NP-completeness and the case of lexicographic product graphs. Aims Mathematics, 9(6), 15325-15345. DOI: 10.3934/math.2024744
URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
Entitat: Universitat Rovira i Virgili
Any de publicació de la revista: 2024
Tipus de publicació: Journal Publications