Articles producció científica> Estudis Anglesos i Alemanys

Evaluating the Language Abilities of Large Language Models vs. Humans: Three Caveats

  • Dades identificatives

    Identificador: imarina:9369657
    Autors:
    Leivada, EvelinaDentella, VittoriaGuenther, Fritz
    Resum:
    We identify and analyze three caveats that may arise when analyzing the linguistic abilities of Large Language Models. The problem of unlicensed generalizations refers to the danger of interpreting performance in one task as predictive of the models' overall capabilities, based on the assumption that because a specific task performance is indicative of certain underlying capabilities in humans, the same association holds for models. The human-like paradox refers to the problem of lacking human comparisons, while at the same time attributing human-like abilities to the models. Last, the problem of double standards refers to the use of tasks and methodologies that either cannot be applied to humans or they are evaluated differently in models vs. humans. While we recognize the impressive linguistic abilities of LLMs, we conclude that specific claims about the
  • Altres:

    Autor segons l'article: Leivada, Evelina; Dentella, Vittoria; Guenther, Fritz
    Departament: Estudis Anglesos i Alemanys
    Autor/s de la URV: Dentella, Vittoria
    Paraules clau: Probabilities Probabilitie Large language models Grammaticality Artificial intelligence
    Resum: We identify and analyze three caveats that may arise when analyzing the linguistic abilities of Large Language Models. The problem of unlicensed generalizations refers to the danger of interpreting performance in one task as predictive of the models' overall capabilities, based on the assumption that because a specific task performance is indicative of certain underlying capabilities in humans, the same association holds for models. The human-like paradox refers to the problem of lacking human comparisons, while at the same time attributing human-like abilities to the models. Last, the problem of double standards refers to the use of tasks and methodologies that either cannot be applied to humans or they are evaluated differently in models vs. humans. While we recognize the impressive linguistic abilities of LLMs, we conclude that specific claims about the
    Àrees temàtiques: Linguistics and language Linguistics Letras / linguística Language and linguistics Language & linguistics Interdisciplinary research in the social sciences Interdisciplinary research in the humanities Experimental and cognitive psychology Ciencias sociales Ciencias humanas
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: vittoria.dentella@estudiants.urv.cat
    Identificador de l'autor: 0000-0001-6697-9184
    Data d'alta del registre: 2025-02-18
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Referència a l'article segons font original: Biolinguistics. 18 e14391-
    Referència de l'ítem segons les normes APA: Leivada, Evelina; Dentella, Vittoria; Guenther, Fritz (2024). Evaluating the Language Abilities of Large Language Models vs. Humans: Three Caveats. Biolinguistics, 18(), e14391-. DOI: 10.5964/bioling.14391
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2024
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Experimental and Cognitive Psychology,Language & Linguistics,Linguistics and Language
    Probabilities
    Probabilitie
    Large language models
    Grammaticality
    Artificial intelligence
    Linguistics and language
    Linguistics
    Letras / linguística
    Language and linguistics
    Language & linguistics
    Interdisciplinary research in the social sciences
    Interdisciplinary research in the humanities
    Experimental and cognitive psychology
    Ciencias sociales
    Ciencias humanas
  • Documents:

  • Cerca a google

    Search to google scholar