Autor segons l'article: Bernal, Mary Carlota; Batista, Edgar; Martinez-Balleste, Antoni; Solanas, Agusti
Departament: Enginyeria Informàtica i Matemàtiques
Autor/s de la URV: Batista De Frutos, Edgar / Bernal Jimenez, Mary / BERNAL SOLANO, MARIA DOLORES / Martínez Ballesté, Antoni / Solanas Gómez, Agustín
Paraules clau: Structural networks Older-adults Older adults Older adult Machine learning approach Machine learning Health Functional connectivity Elderly Early-diagnosis Brain age Biomarker Artificial intelligence Ageing datasets Ageing Age-related-changes
Resum: As society experiences accelerated ageing, understanding the complex biological processes of human ageing, which are affected by a large number of variables and factors, becomes increasingly crucial. Artificial intelligence (AI) presents a promising avenue for ageing research, offering the ability to detect patterns, make accurate predictions, and extract valuable insights from large volumes of complex, heterogeneous data. As ageing research increasingly leverages AI techniques, we present a timely systematic literature review to explore the current state-of-the-art in this field following a rigorous and transparent review methodology. As a result, a total of 77 articles have been identified, summarised, and categorised based on their characteristics. AI techniques, such as machine learning and deep learning, have been extensively used to analyse diverse datasets, comprising imaging, genetic, behavioural, and contextual data. Findings showcase the potential of AI in predicting age-related outcomes, developing ageing biomarkers, and determining factors associated with healthy ageing. However, challenges related to data quality, interpretability of AI models, and privacy and ethical considerations have also been identified. Despite the advancements, novel approaches suggest that there is still room for improvement to provide personalised AI-driven healthcare services and promote active ageing initiatives with the ultimate goal of enhancing the quality of life and well-being of older adults.Graphical abstractOverview of the literature review.
Àrees temàtiques: Matemática / probabilidade e estatística Interdisciplinar Engenharias iv Engenharias iii Computer science, artificial intelligence Ciências ambientais Ciências agrárias i Ciência da computação Biotecnología Artificial intelligence Administração, ciências contábeis e turismo
Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
Adreça de correu electrònic de l'autor: mary.bernal@estudiants.urv.cat edgar.batista@urv.cat edgar.batista@urv.cat agusti.solanas@urv.cat antoni.martinez@urv.cat
Identificador de l'autor: 0000-0001-7565-2909 https://orcid.org/0000-0002-4881-6215 0000-0002-4881-6215 0000-0002-1787-7410
Data d'alta del registre: 2025-01-28
Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
Referència a l'article segons font original: Applied Intelligence. 54 (22): 11949-11977
Referència de l'ítem segons les normes APA: Bernal, Mary Carlota; Batista, Edgar; Martinez-Balleste, Antoni; Solanas, Agusti (2024). Artificial intelligence for the study of human ageing: a systematic literature review. Applied Intelligence, 54(22), 11949-11977. DOI: 10.1007/s10489-024-05817-z
Entitat: Universitat Rovira i Virgili
Any de publicació de la revista: 2024
Tipus de publicació: Journal Publications