Autor segons l'article: Furruka Banu, Syeda; Sarker, Md Mostafa Kamal; Abdel-Nasser, Mohamed; Rashwan, Hatem A; Puig, Domenec
Departament: Enginyeria Informàtica i Matemàtiques
Autor/s de la URV: Abdellatif Fatahallah Ibrahim Mahmoud, Hatem / Abdelnasser Mohamed Mahmoud, Mohamed / Banu, Syeda Furruka / Puig Valls, Domènec Savi
Paraules clau: Computed tomography (ct) Computer-aided diagnosis (cad) Ct scan Deep learnin Deep learning Lung cancer Lung nodule segmentation Small pulmonary nodules
Resum: Lung cancer is a dangerous non-communicable disease attacking both women and men and every year it causes thousands of deaths worldwide. Accurate lung nodule segmentation in computed tomography (CT) images can help detect lung cancer early. Since there are different locations and indistinguishable shapes of lung nodules in CT images, the accuracy of the existing automated lung nodule segmentation methods still needs further enhancements. In an attempt towards overcoming the above-mentioned challenges, this paper presents WEU-Net; an end-toend encoder-decoder deep learning approach to accurately segment lung nodules in CT images. Specifically, we use a U-Net network as a baseline and propose a weight excitation (WE) mechanism to encourage the deep learning network to learn lung nodule-relevant contextual features during the training stage. WEU-Net was trained and validated on a publicly available CT images dataset called LIDC-IDRI. The experimental results demonstrated that WEU-Net achieved a Dice score of 82.83% and a Jaccard similarity coefficient of 70.55%.
Àrees temàtiques: Artificial intelligence Ciências agrárias i Comunicació i informació Engenharias iii Engenharias iv General o multidisciplinar Información y documentación Interdisciplinar Medicina ii
Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
Adreça de correu electrònic de l'autor: domenec.puig@urv.cat syedafurruka.banu@estudiants.urv.cat hatem.abdellatif@urv.cat mohamed.abdelnasser@urv.cat
Identificador de l'autor: 0000-0002-0562-4205 0000-0002-5624-1941 0000-0001-5421-1637 0000-0002-1074-2441
Data d'alta del registre: 2024-09-21
Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
Referència a l'article segons font original: Frontiers In Artificial Intelligence And Applications. 339 349-356
Referència de l'ítem segons les normes APA: Furruka Banu, Syeda; Sarker, Md Mostafa Kamal; Abdel-Nasser, Mohamed; Rashwan, Hatem A; Puig, Domenec (2021). WEU-Net: A Weight Excitation U-Net for Lung Nodule Segmentation. Amsterdam: IOS Press
URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
Entitat: Universitat Rovira i Virgili
Any de publicació de la revista: 2021
Tipus de publicació: Proceedings Paper