Autor segons l'article: Baget-Bernaldiz, Marc; Fontoba-Poveda, Benilde; Romero-Aroca, Pedro; Navarro-Gil, Raul; Hernando-Comerma, Adriana; Bautista-Perez, Angel; Llagostera-Serra, Monica; Morente-Lorenzo, Cristian; Vizcarro, Montse; Mira-Puerto, Alejandra
Departament: Medicina i Cirurgia
Autor/s de la URV: Baget Bernaldiz, Marc / Llagostera Serra, Mònica / Mira Puerto, Alejandra / Navarro Gil, Raúl / Romero Aroca, Pedro
Paraules clau: Validation Technology Risk-assessment Primary care Primary car Prevalence Optimization Model Guideline Frequency Diabetic retinopathy screening Diabetic retinopathy Cost-effectiveness Artificial intelligence Algorithm
Resum: Background: This study aimed to test an artificial intelligence-based reading system (AIRS) capable of reading retinographies of type 2 diabetic (T2DM) patients and a predictive algorithm (DRPA) that predicts the risk of each patient with T2DM of developing diabetic retinopathy (DR). Methods: We tested the ability of the AIRS to read and classify 15,297 retinal photographs from our database of diabetics and 1200 retinal images taken with Messidor-2 into the different DR categories. We tested the DRPA in a sample of 40,129 T2DM patients. The results obtained by the AIRS and the DRPA were then compared with those provided by four retina specialists regarding sensitivity (S), specificity (SP), positive predictive value (PPV), negative predictive value (NPV), accuracy (ACC), and area under the curve (AUC). Results: The results of testing the AIRS for identifying referral DR (RDR) in our database were ACC = 98.6, S = 96.7, SP = 99.8, PPV = 99.0, NPV = 98.0, and AUC = 0.958, and in Messidor-2 were ACC = 96.78%, S = 94.64%, SP = 99.14%, PPV = 90.54%, NPV = 99.53%, and AUC = 0.918. The results of our DRPA when predicting the presence of any type of DR were ACC = 0.97, S = 0.89, SP = 0.98, PPV = 0.79, NPV = 0.98, and AUC = 0.92. Conclusions: The AIRS performed well when reading and classifying the retinographies of T2DM patients with RDR. The DRPA performed well in predicting the absence of DR based on some clinical variables.
Àrees temàtiques: Medicine, general & internal Internal medicine Clinical biochemistry
Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
Adreça de correu electrònic de l'autor: monica.llagostera@urv.cat marc.baget@urv.cat alejandra.mira@urv.cat alejandra.mira@urv.cat raul.navarrog@estudiants.urv.cat pedro.romero@urv.cat
Identificador de l'autor: 0000-0001-8548-0290 0000-0001-8548-0290 0000-0003-2970-205X 0000-0002-7061-8987
Data d'alta del registre: 2025-02-18
Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
Referència a l'article segons font original: Diagnostics. 14 (17): 1992-
Referència de l'ítem segons les normes APA: Baget-Bernaldiz, Marc; Fontoba-Poveda, Benilde; Romero-Aroca, Pedro; Navarro-Gil, Raul; Hernando-Comerma, Adriana; Bautista-Perez, Angel; Llagostera-S (2024). Artificial Intelligence-Based Screening System for Diabetic Retinopathy in Primary Care. Diagnostics, 14(17), 1992-. DOI: 10.3390/diagnostics14171992
URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
Entitat: Universitat Rovira i Virgili
Any de publicació de la revista: 2024
Tipus de publicació: Journal Publications