Autor segons l'article: Moltó-Balado P; Reverté-Villarroya S; Alonso-Barberán V; Monclús-Arasa C; Balado-Albiol MT; Clua-Queralt J; Clua-Espuny JL
Departament: Infermeria
Autor/s de la URV: REVERTÉ REVERTÉ, SANDRA / Reverté Villarroya, Silvia
Paraules clau: Artificial intelligence Atrial fibrillation Machine learning Major adverse cardiovascular events (mace)
Resum: The increasing prevalence of atrial fibrillation (AF) and its association with Major Adverse Cardiovascular Events (MACE) presents challenges in early identification and treatment. Although existing risk factors, biomarkers, genetic variants, and imaging parameters predict MACE, emerging factors may be more decisive. Artificial intelligence and machine learning techniques (ML) offer a promising avenue for more effective AF evolution prediction. Five ML models were developed to obtain predictors of MACE in AF patients. Two-thirds of the data were used for training, employing diverse approaches and optimizing to minimize prediction errors, while the remaining third was reserved for testing and validation. AdaBoost emerged as the top-performing model (accuracy: 0.9999; recall: 1; F1 score: 0.9997). Noteworthy features influencing predictions included the Charlson Comorbidity Index (CCI), diabetes mellitus, cancer, the Wells scale, and CHA2DS2-VASc, with specific associations identified. Elevated MACE risk was observed, with a CCI score exceeding 2.67 ± 1.31 (p < 0.001), CHA2DS2-VASc score of 4.62 ± 1.02 (p < 0.001), and an intermediate-risk Wells scale classification. Overall, the AdaBoost ML offers an alternative predictive approach to facilitate the early identification of MACE risk in the assessment of patients with AF.
Àrees temàtiques: Computer science (miscellaneous) Engineering, multidisciplinary
Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
Adreça de correu electrònic de l'autor: silvia.reverte@urv.cat
Identificador de l'autor: 0000-0002-2052-9978
Data d'alta del registre: 2024-10-12
Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
Referència a l'article segons font original: Technologies. 12 (2):
Referència de l'ítem segons les normes APA: Moltó-Balado P; Reverté-Villarroya S; Alonso-Barberán V; Monclús-Arasa C; Balado-Albiol MT; Clua-Queralt J; Clua-Espuny JL (2024). Machine Learning Approaches to Predict Major Adverse Cardiovascular Events in Atrial Fibrillation. Technologies, 12(2), -. DOI: 10.3390/technologies12020013
URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
Entitat: Universitat Rovira i Virgili
Any de publicació de la revista: 2024
Tipus de publicació: Journal Publications