Autor segons l'article: Schwarz Schuler, Joao Paulo; Romani, Santiago; Abdel-Nasser, Mohamed; Rashwan, Hatem; Puig, Domenec
Departament: Enginyeria Informàtica i Matemàtiques
Autor/s de la URV: Abdellatif Fatahallah Ibrahim Mahmoud, Hatem / Abdelnasser Mohamed Mahmoud, Mohamed / Puig Valls, Domènec Savi / Romaní Also, Santiago
Paraules clau: Classification Cnn Computer vision Dcnn Deep learnin Deep learning Plant leaf disease Plant village
Resum: The Food and Agriculture Organization (FAO) estimated that plant diseases cost the world economy $220 billion in 2019. In this paper, we propose a lightweight Deep Convolutional Neural Network (DCNN) for automatic and reliable plant leaf diseases classification. The proposed method starts by converting input images of plant leaves from RGB to CIE LAB coordinates. Then, L and AB channels go into separate branches along with the first three layers of a modified Inception V3 architecture. This approach saves from 1/3 to 1/2 of the parameters in the separated branches. It also provides better classification reliability when perturbing the original RGB images with several types of noise (salt and pepper, blurring, motion blurring and occlusions). These types of noise simulate common image variability found in the natural environment. We hypothesize that the filters in the AB branch provide better resistance to these types of variability due to their relatively low frequency in the image-space domain.
Àrees temàtiques: Artificial intelligence Ciências agrárias i Comunicació i informació Engenharias iii Engenharias iv General o multidisciplinar Información y documentación Interdisciplinar Medicina ii
Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
Adreça de correu electrònic de l'autor: domenec.puig@urv.cat santiago.romani@urv.cat hatem.abdellatif@urv.cat mohamed.abdelnasser@urv.cat
Identificador de l'autor: 0000-0002-0562-4205 0000-0001-6673-9615 0000-0001-5421-1637 0000-0002-1074-2441
Data d'alta del registre: 2024-10-12
Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
Referència a l'article segons font original: Frontiers In Artificial Intelligence And Applications. 339 375-382
Referència de l'ítem segons les normes APA: Schwarz Schuler, Joao Paulo; Romani, Santiago; Abdel-Nasser, Mohamed; Rashwan, Hatem; Puig, Domenec (2021). Reliable Deep Learning Plant Leaf Disease Classification Light-Chroma Separated BranchesBased on. Amsterdam: IOS Press
URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
Entitat: Universitat Rovira i Virgili
Any de publicació de la revista: 2021
Tipus de publicació: Proceedings Paper