Articles producció científica> Enginyeria Informàtica i Matemàtiques

Multi Objective Genetic Algorithm for Optimal Route Selection from a Set of Recommended Touristic Activities

  • Dades identificatives

    Identificador: imarina:9385667
    Autors:
    Orama, Jonathan AyebakuroMoreno, AntonioBorras, Joan
    Resum:
    It is a known fact that the order in which touristic activities are experienced plays a role in how enjoyable they are. This is the reason why tourists prefer to book carefully prepared day tours on arrival to a new destination, as they allow them to see the essence of the destination while traversing scenic routes. Tours are great, but they are expensive, do not allow room for personal exploration, and are built as a one-size-fits-all which does not consider the individual preferences of the tourist. In contrast, it is possible to make an optimal selection and ordering of touristic activities from a larger set of possibilities that match a tourist's personal preferences, balancing important aspects like diversity, spatial proximity, or degree of interest on popular places. We propose a multi-objective genetic algorithm that uses a weighted averaging operator to balance four diverse objective functions crafted to maintain diversity, proximity, interest on popularity, and cultural preference. The system has been evaluated against four baseline algorithms and found to perform significantly better for the specified purpose.
  • Altres:

    Autor segons l'article: Orama, Jonathan Ayebakuro; Moreno, Antonio; Borras, Joan
    Departament: Enginyeria Informàtica i Matemàtiques
    Autor/s de la URV: Borràs Nogués, Joan / Moreno Ribas, Antonio / Orama, Ayebakuro Jonathan
    Paraules clau: Multi-objective genetic algorithm Travel route optimization Weighted average objective balancin Weighted average objective balancing
    Resum: It is a known fact that the order in which touristic activities are experienced plays a role in how enjoyable they are. This is the reason why tourists prefer to book carefully prepared day tours on arrival to a new destination, as they allow them to see the essence of the destination while traversing scenic routes. Tours are great, but they are expensive, do not allow room for personal exploration, and are built as a one-size-fits-all which does not consider the individual preferences of the tourist. In contrast, it is possible to make an optimal selection and ordering of touristic activities from a larger set of possibilities that match a tourist's personal preferences, balancing important aspects like diversity, spatial proximity, or degree of interest on popular places. We propose a multi-objective genetic algorithm that uses a weighted averaging operator to balance four diverse objective functions crafted to maintain diversity, proximity, interest on popularity, and cultural preference. The system has been evaluated against four baseline algorithms and found to perform significantly better for the specified purpose.
    Àrees temàtiques: Artificial intelligence Ciências agrárias i Comunicació i informació Engenharias iii Engenharias iv General o multidisciplinar Información y documentación Interdisciplinar Medicina ii
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: antonio.moreno@urv.cat ayebakurojonathan.orama@estudiants.urv.cat
    Identificador de l'autor: 0000-0003-3945-2314 0000-0002-2622-3224
    Data d'alta del registre: 2024-10-12
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Referència a l'article segons font original: Frontiers In Artificial Intelligence And Applications. 356 9-12
    Referència de l'ítem segons les normes APA: Orama, Jonathan Ayebakuro; Moreno, Antonio; Borras, Joan (2022). Multi Objective Genetic Algorithm for Optimal Route Selection from a Set of Recommended Touristic Activities. Amsterdam: IOS Press
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2022
    Tipus de publicació: info:eu-repo/semantics/article
  • Paraules clau:

    Artificial Intelligence
    Multi-objective genetic algorithm
    Travel route optimization
    Weighted average objective balancin
    Weighted average objective balancing
    Artificial intelligence
    Ciências agrárias i
    Comunicació i informació
    Engenharias iii
    Engenharias iv
    General o multidisciplinar
    Información y documentación
    Interdisciplinar
    Medicina ii
  • Documents:

  • Cerca a google

    Search to google scholar