Autor segons l'article: de Lucas, Javier; Lange, Julia; Rivas, Xavier
Departament: Enginyeria Informàtica i Matemàtiques
Autor/s de la URV: Rivas Guijarro, Xavier
Paraules clau: Analytic vector Geometrization Hamiltonian system Infinite-dimensional symplectic manifold Integrabilit Marsden-weinstein reduction Mathematical exposition Normed space Projective schro<spacing diaeresis>dinger equation Quantum-mechanics Representations Unbounded operato
Resum: By using the theory of analytic vectors and manifolds modeled on normed spaces, we provide a rigorous symplectic differential geometric approach to t-dependent Schrodinger equations on separable (possibly infinite-dimensional) Hilbert spaces determined by families of unbounded selfadjoint Hamiltonians admitting a common domain of analytic vectors. This allows one to cope with the lack of smoothness of structures appearing in quantum mechanical problems while using differential geometric techniques. Our techniques also allow for the analysis of problems related to unbounded operators that are not self-adjoint. As an application, the Marsden-Weinstein reduction procedure was employed to map the above-mentioned t-dependent Schrodinger equations onto their projective spaces. We also analyzed other physically and mathematically relevant applications, demonstrating the usefulness of our techniques.
Àrees temàtiques: General mathematics Mathematics Mathematics (all) Mathematics (miscellaneous) Mathematics, applied
Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
Adreça de correu electrònic de l'autor: xavier.rivas@urv.cat
Data d'alta del registre: 2024-10-26
Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
Enllaç font original: https://www.aimspress.com/article/doi/10.3934/math.20241359
Referència a l'article segons font original: Aims Mathematics. 9 (10): 27998-28043
Referència de l'ítem segons les normes APA: de Lucas, Javier; Lange, Julia; Rivas, Xavier (2024). A symplectic approach to Schrodinger equations in the infinite-dimensional unbounded setting. Aims Mathematics, 9(10), 27998-28043. DOI: 10.3934/math.20241359/math.20241359
URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
DOI de l'article: 10.3934/math.20241359
Entitat: Universitat Rovira i Virgili
Any de publicació de la revista: 2024
Tipus de publicació: Journal Publications