Articles producció científica> Química Física i Inorgànica

Wet Chemical Engineering of Nanostructured GRIN Lenses

  • Dades identificatives

    Identificador: imarina:9388735
    Autors:
    Becerril-Castro, I BrianTurino, MariacristinaPazos-Perez, NicolasXiaofei, XiaoLevato, TadzioMaier, Stefan AAlvarez-Puebla, Ramon AGiannini, Vincenzo
    Resum:
    Gradient-index (GRIN) lenses have long been recognized for their importance in optics as a result of their ability to manipulate light. However, traditional GRIN lenses are limited on a scale of tens of microns, impeding their integration into nanoscale optical devices. This study presents a groundbreaking self-assembled method that overcomes this limitation, allowing for constructing GRIN lenses at an extremely small dimension. The self-assembly process offers several advantages, including creating highly precise, scalable, cost-effective, and complex structures that eliminate the need for intricate and time-consuming manual assembly. By engineering densely packed arrays of metallic nanoparticles, exceptional control over the local refractive index has been achieved. This is accomplished by layer-by-layer assembly of gold nanoparticles of different sizes over silica beads. A GRIN lens light-sink is built where light is preferentially directed toward the center, which is corroborated by measuring the fluorescence of Rhodamine B (RhB) in the inside. Unlike traditional bulky macroscopic GRIN lenses, light-sinks boast a size under 2.5 mu m. Notably, the self-focusing effects of this design allowed us to track the growth of single-nanoparticle layers using SERS (Surface-Enhanced Raman Spectroscopy). These results pave the way for designing and developing lens-like devices at the nanoscale, allowing unprecedented light manipulation. By engineering densely packed arrays of metallic nanoparticles, a GRIN lens light-sink is built where light is preferentially directed toward the center. Unlike traditional bulky macroscopic GRIN lenses, this light-sink features a size under 2.5 mu m, with exceptional control over the local refractive index. image
  • Altres:

    Autor segons l'article: Becerril-Castro, I Brian; Turino, Mariacristina; Pazos-Perez, Nicolas; Xiaofei, Xiao; Levato, Tadzio; Maier, Stefan A; Alvarez-Puebla, Ramon A; Giannini, Vincenzo
    Departament: Química Física i Inorgànica
    Autor/s de la URV: Alvarez Puebla, Ramon Angel / Pazos Pérez, Nicolás Carlos / Turino, Mariacristina
    Paraules clau: Nanolenses Nanolense Hierarchical plasmonic nanostructures Grin lens
    Resum: Gradient-index (GRIN) lenses have long been recognized for their importance in optics as a result of their ability to manipulate light. However, traditional GRIN lenses are limited on a scale of tens of microns, impeding their integration into nanoscale optical devices. This study presents a groundbreaking self-assembled method that overcomes this limitation, allowing for constructing GRIN lenses at an extremely small dimension. The self-assembly process offers several advantages, including creating highly precise, scalable, cost-effective, and complex structures that eliminate the need for intricate and time-consuming manual assembly. By engineering densely packed arrays of metallic nanoparticles, exceptional control over the local refractive index has been achieved. This is accomplished by layer-by-layer assembly of gold nanoparticles of different sizes over silica beads. A GRIN lens light-sink is built where light is preferentially directed toward the center, which is corroborated by measuring the fluorescence of Rhodamine B (RhB) in the inside. Unlike traditional bulky macroscopic GRIN lenses, light-sinks boast a size under 2.5 mu m. Notably, the self-focusing effects of this design allowed us to track the growth of single-nanoparticle layers using SERS (Surface-Enhanced Raman Spectroscopy). These results pave the way for designing and developing lens-like devices at the nanoscale, allowing unprecedented light manipulation. By engineering densely packed arrays of metallic nanoparticles, a GRIN lens light-sink is built where light is preferentially directed toward the center. Unlike traditional bulky macroscopic GRIN lenses, this light-sink features a size under 2.5 mu m, with exceptional control over the local refractive index. image
    Àrees temàtiques: Optics Materials science, multidisciplinary Electronic, optical and magnetic materials Atomic and molecular physics, and optics
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: ramon.alvarez@urv.cat mariacristina.turino@estudiants.urv.cat nicolas.pazos@urv.cat
    Identificador de l'autor: 0000-0003-4770-5756 0000-0003-3053-4970 https://orcid.org/0000-0002-2326-4231 0000-0002-2326-4231
    Data d'alta del registre: 2025-01-27
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referència a l'article segons font original: Advanced Optical Materials. 12 (20):
    Referència de l'ítem segons les normes APA: Becerril-Castro, I Brian; Turino, Mariacristina; Pazos-Perez, Nicolas; Xiaofei, Xiao; Levato, Tadzio; Maier, Stefan A; Alvarez-Puebla, Ramon A; Gianni (2024). Wet Chemical Engineering of Nanostructured GRIN Lenses. Advanced Optical Materials, 12(20), -. DOI: 10.1002/adom.202400485
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2024
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Materials Science, Multidisciplinary,Optics
    Nanolenses
    Nanolense
    Hierarchical plasmonic nanostructures
    Grin lens
    Optics
    Materials science, multidisciplinary
    Electronic, optical and magnetic materials
    Atomic and molecular physics, and optics
  • Documents:

  • Cerca a google

    Search to google scholar