Autor segons l'article: Santos-Betancourt, Alejandro; Carlos Santos-Ceballos, Jose; Salehnia, Foad; Ayoub Alouani, Mohamed; Romero, Alfonso; Luis Ramirez, Jose; Vilanova, Xavier
Departament: Enginyeria Electrònica, Elèctrica i Automàtica
Autor/s de la URV: Alouani, Mohamed Ayoub / Ramírez Falo, José Luis / Romero Nevado, Alfonso José / Salehnia, Foad / Santos Betancourt, Alejandro / Vilanova Salas, Javier
Paraules clau: Air pollution monitoring Ammonia Emission Gas detectors Gas sensor Gas-sensing properties Graphen Iot Lab-made sensors Laboratory-made sensors Mixture of gases Multilayer perceptron Multilayer perceptron (mlp) Multivariate analysis Nitrogen Nitrogen dioxid Nitrogen dioxide Room-temperature Sensor arrays Sensor phenomena and characterization Sensor systems Sensors Temperature sensors Transient Wireless fidelity Wireless sensor networks
Resum: This work presents the design and setup of an IoT platform at level four of the technology readiness level (TRL-4) to detect, classify, and quantify pollutant gases. This study combines concepts such as wireless sensor networks (WSNs), arrays of sensors, and multivariate data analysis to interface different nanostructured chemiresistor gas sensors. The IoT platform consists of several gas sensor nodes (GSNs) with Wi-Fi capability to send data from a sensor array to a server and its user interface (UI). Each GSN interfaces one sensor array (up to four chemiresistor gas sensors and one temperature and humidity sensor). The server channels the data from the GSNs to the UI. The platform was set up following a two-stage methodology. First (training stage), sensor data were received, stored, and used to train different multilayer perceptrons (MLPs) artificial neural networks (ANNs). Second (recognition stage), models were implemented in the UI to classify and quantify the presence of pollutants. The platform was tested in laboratory conditions under exposure to nitrogen dioxide and ammonia at a different %RH. As a result, the platform improves the classification and quantification times compared with the single-sensor approach. In addition, the system was evaluated using a gas mixture of both gases, showing a classification accuracy exceeding 99%. Likewise, the training and recognition stages can be repeated to add new chemiresistor gas sensors in the node, add new nodes to the platform, and deploy the nodes in different scenarios.
Àrees temàtiques: Astronomia / física Ciência da computação Ciências ambientais Ciências biológicas i Electrical and electronic engineering Engenharias ii Engenharias iii Engenharias iv Engineering, electrical & electronic Instrumentation Instruments & instrumentation Interdisciplinar Materiais
Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
Adreça de correu electrònic de l'autor: alfonsojose.romero@urv.cat joseluis.ramirez@urv.cat xavier.vilanova@urv.cat alejandro.santos@urv.cat foad.salehnia@urv.cat alejandro.santos@urv.cat mohamedayoub.alouani@urv.cat
Identificador de l'autor: 0000-0003-3502-0813 0000-0001-8231-4019 0000-0002-6245-7933
Data d'alta del registre: 2024-11-23
Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
Referència a l'article segons font original: Ieee Transactions On Instrumentation And Measurement. 73 2534511-
Referència de l'ítem segons les normes APA: Santos-Betancourt, Alejandro; Carlos Santos-Ceballos, Jose; Salehnia, Foad; Ayoub Alouani, Mohamed; Romero, Alfonso; Luis Ramirez, Jose; Vilanova, Xav (2024). IoT Platform Enhanced With Neural Network for Air Pollutant Monitoring. Ieee Transactions On Instrumentation And Measurement, 73(), 2534511-. DOI: 10.1109/TIM.2024.3481592
URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
Entitat: Universitat Rovira i Virgili
Any de publicació de la revista: 2024
Tipus de publicació: Journal Publications