Articles producció científica> Enginyeria Informàtica i Matemàtiques

Breast Tumor Classification Using Dynamic Ultrasound Sequence Pooling and Deep Transformer Features

  • Dades identificatives

    Identificador: imarina:9391498
    Autors:
    Hassanien, Mohamed ASingh, Vivek KumarAbdel-Nasser, MohamedPuig, Domenec
    Resum:
    Breast ultrasound (BUS) imaging is widely utilized for detecting breast cancer, one of the most life-threatening cancers affecting women. Computer-aided diagnosis (CAD) systems can assist radiologists in diagnosing breast cancer; however, the performance of these systems can be degrade by speckle noise, artifacts, and low contrast in BUS images. In this paper, we propose a novel method for breast tumor classification based on the dynamic pooling of BUS sequences. Specifically, we introduce a weighted dynamic pooling approach that models the temporal evolution of breast tissues in BUS sequences, thereby reducing the impact of noise and artifacts. The dynamic pooling weights are determined using image quality metrics such as blurriness and brightness. The pooled BUS sequence is then input into an efficient hybrid vision transformer-CNN network, which is trained to classify breast tumors as benign or malignant. Extensive experiments and comparisons on BUS sequences demonstrate the effectiveness of the proposed method, achieving an accuracy of 93.78%, and outperforming existing methods. The proposed method has the potential to enhance breast cancer diagnosis and contribute to lowering the mortality rate.
  • Altres:

    Autor segons l'article: Hassanien, Mohamed A; Singh, Vivek Kumar; Abdel-Nasser, Mohamed; Puig, Domenec
    Departament: Enginyeria Informàtica i Matemàtiques
    Autor/s de la URV: Abdelnasser Mohamed Mahmoud, Mohamed / Puig Valls, Domènec Savi
    Paraules clau: Breast cancer Breast ultrasound Cad systems Deep learning Vision transforme
    Resum: Breast ultrasound (BUS) imaging is widely utilized for detecting breast cancer, one of the most life-threatening cancers affecting women. Computer-aided diagnosis (CAD) systems can assist radiologists in diagnosing breast cancer; however, the performance of these systems can be degrade by speckle noise, artifacts, and low contrast in BUS images. In this paper, we propose a novel method for breast tumor classification based on the dynamic pooling of BUS sequences. Specifically, we introduce a weighted dynamic pooling approach that models the temporal evolution of breast tissues in BUS sequences, thereby reducing the impact of noise and artifacts. The dynamic pooling weights are determined using image quality metrics such as blurriness and brightness. The pooled BUS sequence is then input into an efficient hybrid vision transformer-CNN network, which is trained to classify breast tumors as benign or malignant. Extensive experiments and comparisons on BUS sequences demonstrate the effectiveness of the proposed method, achieving an accuracy of 93.78%, and outperforming existing methods. The proposed method has the potential to enhance breast cancer diagnosis and contribute to lowering the mortality rate.
    Àrees temàtiques: Computer science (all) Computer science (miscellaneous) Computer science, theory & methods General computer science
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: domenec.puig@urv.cat mohamed.abdelnasser@urv.cat
    Identificador de l'autor: 0000-0002-0562-4205 0000-0002-1074-2441
    Data d'alta del registre: 2024-11-23
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Referència a l'article segons font original: International Journal Of Advanced Computer Science And Applications. 15 (10): 1099-1107
    Referència de l'ítem segons les normes APA: Hassanien, Mohamed A; Singh, Vivek Kumar; Abdel-Nasser, Mohamed; Puig, Domenec (2024). Breast Tumor Classification Using Dynamic Ultrasound Sequence Pooling and Deep Transformer Features. International Journal Of Advanced Computer Science And Applications, 15(10), 1099-1107
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2024
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Computer Science (Miscellaneous),Computer Science, Theory & Methods
    Breast cancer
    Breast ultrasound
    Cad systems
    Deep learning
    Vision transforme
    Computer science (all)
    Computer science (miscellaneous)
    Computer science, theory & methods
    General computer science
  • Documents:

  • Cerca a google

    Search to google scholar