Articles producció científica> Química Analítica i Química Orgànica

Navigating the complexity: Managing multivariate error and uncertainties in spectroscopic data modelling

  • Dades identificatives

    Identificador: imarina:9393167
    Autors:
    Giussani, BarbaraGorla, GiuliaEzenarro, JokinRiu, JordiBoque, Ricard
    Resum:
    Spectroscopy and chemometrics, supported by computer science, have yielded promising outcomes, as evidenced by trends observed in literature searches. However, while researchers meticulously construct chemometric models for exploratory, quantitation and classification purposes, the investigation of data quality, particularly error analysis, remains less frequent. Understanding and quantifying measurement errors is crucial for robust spectroscopic modeling and uncertainty estimation. By unraveling complexities related to multivariate errors and uncertainties in spectroscopic data, the scientific community is empowered to extract reliable information from spectroscopic analyses, paving the way for enhanced analytical practices. This review underscores the necessity for the scientific community to integrate error analysis and uncertainty estimation into multivariate analysis methods, offering tailored solutions for diverse data types and analysis objectives.
  • Altres:

    Codi de projecte: 2021 SGR 00705
    Paraules clau: Uncertainty estimation Standard error Spectroscop Prediction uncertainty Partial least-squares Near-infrared spectroscopy Multivariate measurement error Multivariate classification Multivariate calibration Linear-regression Exploratory analysis Detection limits Classification methods Chemometric models Chemical-dat Analytical figures
    Data d'alta del registre: 2024-12-07
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Referència a l'article segons font original: Trac-Trends In Analytical Chemistry. 181 118051-
    Referència de l'ítem segons les normes APA: Giussani, Barbara; Gorla, Giulia; Ezenarro, Jokin; Riu, Jordi; Boque, Ricard (2024). Navigating the complexity: Managing multivariate error and uncertainties in spectroscopic data modelling. Trac-Trends In Analytical Chemistry, 181(), 118051-. DOI: 10.1016/j.trac.2024.118051
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Acrònim: CHEMOSENS
    Tipus de publicació: Journal Publications
    Codi de projecte 3: MICIU/AEI/10.13039/501100011033/
    Codi de projecte 4: PID2022-136649OBI00
    Autor segons l'article: Giussani, Barbara; Gorla, Giulia; Ezenarro, Jokin; Riu, Jordi; Boque, Ricard
    Departament: Química Analítica i Química Orgànica
    Autor/s de la URV: Boqué Martí, Ricard / EZENARRO GARATE, JOKIN / Riu Rusell, Jordi
    Resum: Spectroscopy and chemometrics, supported by computer science, have yielded promising outcomes, as evidenced by trends observed in literature searches. However, while researchers meticulously construct chemometric models for exploratory, quantitation and classification purposes, the investigation of data quality, particularly error analysis, remains less frequent. Understanding and quantifying measurement errors is crucial for robust spectroscopic modeling and uncertainty estimation. By unraveling complexities related to multivariate errors and uncertainties in spectroscopic data, the scientific community is empowered to extract reliable information from spectroscopic analyses, paving the way for enhanced analytical practices. This review underscores the necessity for the scientific community to integrate error analysis and uncertainty estimation into multivariate analysis methods, offering tailored solutions for diverse data types and analysis objectives.
    Acció del programa de finançament 2: Contratos de personal investigador predoctoral en formación
    Àrees temàtiques: Spectroscopy Química Medicina ii Interdisciplinar Farmacia Environmental chemistry Engenharias iv Engenharias iii Engenharias ii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Chemistry, analytical Biotecnología Astronomia / física Analytical chemistry
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Acció del programa de finançament 4: Una manera de hacer Europa
    Adreça de correu electrònic de l'autor: ricard.boque@urv.cat jordi.riu@urv.cat jokin.ezenarro@urv.cat
    Identificador de l'autor: 0000-0001-7311-4824 0000-0001-5823-9223 0000-0001-9234-7877
    Codi del projecte 2: 2021PMF-BS-12
    Programa de finançament 2: Universitat Rovira i Virgili - Banco Santander
    Programa de finançament: SGR - Departament de Recerca i Universitats, Generalitat de Catalunya
    Programa de finançament 4: FEDER
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2024
    Acció del programa de finançament: Chemometrics and Sensorics for Analytical Solutions
  • Paraules clau:

    Analytical Chemistry,Chemistry, Analytical,Environmental Chemistry,Spectroscopy
    Uncertainty estimation
    Standard error
    Spectroscop
    Prediction uncertainty
    Partial least-squares
    Near-infrared spectroscopy
    Multivariate measurement error
    Multivariate classification
    Multivariate calibration
    Linear-regression
    Exploratory analysis
    Detection limits
    Classification methods
    Chemometric models
    Chemical-dat
    Analytical figures
    Spectroscopy
    Química
    Medicina ii
    Interdisciplinar
    Farmacia
    Environmental chemistry
    Engenharias iv
    Engenharias iii
    Engenharias ii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências ambientais
    Ciências agrárias i
    Ciência de alimentos
    Chemistry, analytical
    Biotecnología
    Astronomia / física
    Analytical chemistry
  • Documents:

  • Cerca a google

    Search to google scholar