Articles producció científica> Bioquímica i Biotecnologia

Predictive evolution of metabolic phenotypes using model-designed environments

  • Dades identificatives

    Identificador: imarina:9415103
    Autors:
    Jouhten, PaulaKonstantinidis, DimitriosPereira, FilipaAndrejev, SergejGrkovska, KristinaCastillo, SandraGhiachi, PayamBeltran, GemmaAlmaas, EivindMas, AlbertWarringer, JonasGonzalez, RamonMorales, PilarPatil, Kiran R
    Resum:
    Adaptive evolution under controlled laboratory conditions has been highly effective in selecting organisms with beneficial phenotypes such as stress tolerance. The evolution route is particularly attractive when the organisms are either difficult to engineer or the genetic basis of the phenotype is complex. However, many desired traits, like metabolite secretion, have been inaccessible to adaptive selection due to their trade-off with cell growth. Here, we utilize genome-scale metabolic models to design nutrient environments for selecting lineages with enhanced metabolite secretion. To overcome the growth-secretion trade-off, we identify environments wherein growth becomes correlated with a secondary trait termed tacking trait. The latter is selected to be coupled with the desired trait in the application environment where the trait manifestation is required. Thus, adaptive evolution in the model-designed selection environment and subsequent return to the application environment is predicted to enhance the desired trait. We experimentally validate this strategy by evolving Saccharomyces cerevisiae for increased secretion of aroma compounds, and confirm the predicted flux-rerouting using genomic, transcriptomic, and proteomic analyses. Overall, model-designed selection environments open new opportunities for predictive evolution.
  • Altres:

    Autor segons l'article: Jouhten, Paula; Konstantinidis, Dimitrios; Pereira, Filipa; Andrejev, Sergej; Grkovska, Kristina; Castillo, Sandra; Ghiachi, Payam; Beltran, Gemma; Almaas, Eivind; Mas, Albert; Warringer, Jonas; Gonzalez, Ramon; Morales, Pilar; Patil, Kiran R
    Departament: Bioquímica i Biotecnologia
    Autor/s de la URV: Beltran Casellas, Gemma / Mas Baron, Alberto
    Paraules clau: Adaptive evolution Covariances Escherichia-coli Genome Genome-scale metabolic model Genomics Growth Identification Phenotype Predictive evolution Proteome Proteomics Reconstruction Saccharomyces cerevisiae Saccharomyces-cerevisiae Selection Strain Strains Wine arom Wine aroma Yeast
    Resum: Adaptive evolution under controlled laboratory conditions has been highly effective in selecting organisms with beneficial phenotypes such as stress tolerance. The evolution route is particularly attractive when the organisms are either difficult to engineer or the genetic basis of the phenotype is complex. However, many desired traits, like metabolite secretion, have been inaccessible to adaptive selection due to their trade-off with cell growth. Here, we utilize genome-scale metabolic models to design nutrient environments for selecting lineages with enhanced metabolite secretion. To overcome the growth-secretion trade-off, we identify environments wherein growth becomes correlated with a secondary trait termed tacking trait. The latter is selected to be coupled with the desired trait in the application environment where the trait manifestation is required. Thus, adaptive evolution in the model-designed selection environment and subsequent return to the application environment is predicted to enhance the desired trait. We experimentally validate this strategy by evolving Saccharomyces cerevisiae for increased secretion of aroma compounds, and confirm the predicted flux-rerouting using genomic, transcriptomic, and proteomic analyses. Overall, model-designed selection environments open new opportunities for predictive evolution.
    Àrees temàtiques: Agricultural and biological sciences (all) Agricultural and biological sciences (miscellaneous) Applied mathematics Biochemistry & molecular biology Biochemistry, genetics and molecular biology (all) Biochemistry, genetics and molecular biology (miscellaneous) Biotecnología Ciências biológicas ii Computational theory and mathematics General agricultural and biological sciences General biochemistry,genetics and molecular biology General immunology and microbiology General medicine Immunology and microbiology (all) Immunology and microbiology (miscellaneous) Informati Information systems Medicine (miscellaneous)
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: albert.mas@urv.cat gemma.beltran@urv.cat
    Identificador de l'autor: 0000-0002-0763-1679 0000-0002-7071-205X
    Data d'alta del registre: 2025-01-28
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Referència a l'article segons font original: Molecular Systems Biology. 18 (10): e10980-18
    Referència de l'ítem segons les normes APA: Jouhten, Paula; Konstantinidis, Dimitrios; Pereira, Filipa; Andrejev, Sergej; Grkovska, Kristina; Castillo, Sandra; Ghiachi, Payam; Beltran, Gemma; Al (2022). Predictive evolution of metabolic phenotypes using model-designed environments. Molecular Systems Biology, 18(10), e10980-18. DOI: 10.15252/msb.202210980
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2022
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Agricultural and Biological Sciences (Miscellaneous),Applied Mathematics,Biochemistry & Molecular Biology,Biochemistry, Genetics and Molecular Biology (Miscellaneous),Computational Theory and Mathematics,Immunology and Microbiology (Miscellaneous),Informati,Information Systems,Medicine (Miscellaneous)
    Adaptive evolution
    Covariances
    Escherichia-coli
    Genome
    Genome-scale metabolic model
    Genomics
    Growth
    Identification
    Phenotype
    Predictive evolution
    Proteome
    Proteomics
    Reconstruction
    Saccharomyces cerevisiae
    Saccharomyces-cerevisiae
    Selection
    Strain
    Strains
    Wine arom
    Wine aroma
    Yeast
    Agricultural and biological sciences (all)
    Agricultural and biological sciences (miscellaneous)
    Applied mathematics
    Biochemistry & molecular biology
    Biochemistry, genetics and molecular biology (all)
    Biochemistry, genetics and molecular biology (miscellaneous)
    Biotecnología
    Ciências biológicas ii
    Computational theory and mathematics
    General agricultural and biological sciences
    General biochemistry,genetics and molecular biology
    General immunology and microbiology
    General medicine
    Immunology and microbiology (all)
    Immunology and microbiology (miscellaneous)
    Informati
    Information systems
    Medicine (miscellaneous)
  • Documents:

  • Cerca a google

    Search to google scholar