Articles producció científica> Enginyeria Química

TiO2-Sludge carbon enhanced catalytic oxidative reaction in environmental wastewaters applications

  • Identification data

    Identifier: PC:1253
    Authors:
    Sunil AthalathilBostjan ErjavecRenata KaplanFrank StüberChristophe BengoaJosep FontAgusti FortunyAlbin PintarAzael Fabregat
    Abstract:
    The enhanced oxidative potential of sludge carbon/TiO2 nano composites (SNCs), applied as heterogeneous catalysts in advanced oxidation processes (AOPs), was studied. Fabrification of efficient SNCs using different methods and successful evaluation of their catalytic oxidative activity is reported for the first time. Surface modification processes of hydrothermal deposition, chemical treatment and sol-gel solution resulted in improved catalytic activity and good surface chemistry of the SNCs. The solids obtained after chemical treatment and hydrothermal deposition processes exhibit excellent crystallinity and photocatalytic activity. The highest photocatalytic rate was obtained for the material prepared using hydrothermal deposition technique, compared to other nanocomposites. Further, improved removal of bisphenol A (BPA) from aqueous phase by means of catalytic ozonation and catalytic wet air oxidation processes is achieved over the solid synthesized using chemical treatment method. The present results demonstrate that the addition of TiO2 on the surface of sludge carbon (SC) increases catalytic oxidative activity of SNCs. The latter produced from harmful sludge materials can be therefore used as cost-effective and efficient sludge derived catalysts for the removal of hazardous pollutants.
  • Others:

    Author, as appears in the article.: Sunil Athalathil Bostjan Erjavec Renata Kaplan Frank Stüber Christophe Bengoa Josep Font Agusti Fortuny Albin Pintar Azael Fabregat
    Department: Enginyeria Química
    URV's Author/s: FABREGAT LLANGOSTERA, AZAEL Albin Pintar FORTUNY SANROMÀ, AGUSTÍ FONT CAPAFONS, JOSÉ BENGOA, CHRISTOPHE JOSÉ STÜBER, FRANK ERICH Renata Kaplan Bostjan Erjavec ATHALATHIL RAMANKUTTY, SUNIL
    Keywords: excess sludge Activated carbon Advanced oxidation processes (AOP)
    Abstract: The enhanced oxidative potential of sludge carbon/TiO2 nano composites (SNCs), applied as heterogeneous catalysts in advanced oxidation processes (AOPs), was studied. Fabrification of efficient SNCs using different methods and successful evaluation of their catalytic oxidative activity is reported for the first time. Surface modification processes of hydrothermal deposition, chemical treatment and sol-gel solution resulted in improved catalytic activity and good surface chemistry of the SNCs. The solids obtained after chemical treatment and hydrothermal deposition processes exhibit excellent crystallinity and photocatalytic activity. The highest photocatalytic rate was obtained for the material prepared using hydrothermal deposition technique, compared to other nanocomposites. Further, improved removal of bisphenol A (BPA) from aqueous phase by means of catalytic ozonation and catalytic wet air oxidation processes is achieved over the solid synthesized using chemical treatment method. The present results demonstrate that the addition of TiO2 on the surface of sludge carbon (SC) increases catalytic oxidative activity of SNCs. The latter produced from harmful sludge materials can be therefore used as cost-effective and efficient sludge derived catalysts for the removal of hazardous pollutants.
    Research group: Enginyeria de la Reacció Química i Intensificació de Processos
    Thematic Areas: Enginyeria química Ingeniería química Chemical engineering
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 0304-3894
    Author identifier: n/a 0000-0001-6223-111X n/a 0000-0001-9424-1400 0000-0001-9160-5010 0000-0002-4007-7905 0000-0002-2350-8654 n/a 0000-0002-5525-5401
    Record's date: 2015-12-07
    Last page: 414
    Journal volume: 300
    Papper version: info:eu-repo/semantics/acceptedVersion
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2015
    First page: 406
    Publication Type: Article Artículo Article
  • Keywords:

    Carbó activat
    Aigües residuals -- Depuració
    excess sludge
    Activated carbon
    Advanced oxidation processes (AOP)
    Enginyeria química
    Ingeniería química
    Chemical engineering
    0304-3894
  • Documents:

  • Cerca a google

    Search to google scholar