Articles producció científica> Química Física i Inorgànica

On the role of the imide axial ligand in the spin and oxidation state of Mn corrole and corrolazine complexes

  • Identification data

    Identifier: PC:1524
    Authors:
    Rosa CaballolGerard AlcoverKristin PierlootCoen de Graaf
    Abstract:
    Electronic structure calculations have been performed on four different Mn corrole and corrolazine complexes to clarify the role of the imide axial ligand on the relative stability of the different spin states and the stabilization of the high valent Mn ion in these complexes. Multiconfigurational perturbation theory energy calculations on the DFT optimized geometries shows that all complexes have a singlet ground state except the complex with the strongest electron withdrawing substituent on the imide axial ligand, which is found to have a triplet ground state. The analysis of the sigma and pi interaction between metal and imide ligand shows that this spin crossover is caused by a subtle interplay of geometrical factors (Mn-N distance and coordination angle) and the electron withdrawing character of the substituent on the imide, which reduces the electron donation to the metal centre. The analysis of the multiconfigurational wave functions reveals that the formally MnV ion is stabilized by an important electron transfer from both the equatorial corrole/corrolazine ligand and the axial imide. The macrocycle donates roughly half an electron, being somewhere between the closed-shell trianionic and the dianionic radical form. The imide ligand transfers 2.5 electrons to the metal center, resulting in an effective d-electron count close to five in all complexes.
  • Others:

    Author, as appears in the article.: Rosa Caballol; Gerard Alcover; Kristin Pierloot; Coen de Graaf
    Department: Química Física i Inorgànica
    URV's Author/s: CABALLOL LORENZO, ROSA; Gerard Alcover; Kristin Pierloot; DE GRAAF ., CORNELIS
    Keywords: transition-metal complexes electronic structure Inorganic Chemistry
    Abstract: Electronic structure calculations have been performed on four different Mn corrole and corrolazine complexes to clarify the role of the imide axial ligand on the relative stability of the different spin states and the stabilization of the high valent Mn ion in these complexes. Multiconfigurational perturbation theory energy calculations on the DFT optimized geometries shows that all complexes have a singlet ground state except the complex with the strongest electron withdrawing substituent on the imide axial ligand, which is found to have a triplet ground state. The analysis of the sigma and pi interaction between metal and imide ligand shows that this spin crossover is caused by a subtle interplay of geometrical factors (Mn-N distance and coordination angle) and the electron withdrawing character of the substituent on the imide, which reduces the electron donation to the metal centre. The analysis of the multiconfigurational wave functions reveals that the formally MnV ion is stabilized by an important electron transfer from both the equatorial corrole/corrolazine ligand and the axial imide. The macrocycle donates roughly half an electron, being somewhere between the closed-shell trianionic and the dianionic radical form. The imide ligand transfers 2.5 electrons to the metal center, resulting in an effective d-electron count close to five in all complexes.
    Research group: Química Quàntica
    Thematic Areas: Chemistry Química Química
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 0020-1669
    Author identifier: n/a; n/a; n/a; 0000-0001-8114-6658
    Record's date: 2016-04-28
    Papper version: info:eu-repo/semantics/acceptedVersion
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2016
    Publication Type: Article Artículo Article
  • Keywords:

    Complexos metàl·lics de transició
    Estructura electrònica
    Química inorgànica
    transition-metal complexes
    electronic structure
    Inorganic Chemistry
    Chemistry
    Química
    Química
    0020-1669
  • Documents:

  • Cerca a google

    Search to google scholar