Articles producció científica> Enginyeria Química

Multiplex PCB-based electrochemical detection of cancer biomarkers using MLPA-barcode approach

  • Identification data

    Identifier: PC:1527
  • Authors:

    J.L. Acero Sánchez
    O.Y.F. Henry
    H. Joda
    B. Werne Solnestam
    L. Kvastad
    E. Johansson
    P. Akan
    J. Lundeberg
    N. Lladach
    D. Ramakrishnan
    I. Riley
    C.K. O'Sullivan
  • Others:

    Author, as appears in the article.: J.L. Acero Sánchez; O.Y.F. Henry; H. Joda; B. Werne Solnestam; L. Kvastad; E. Johansson; P. Akan; J. Lundeberg; N. Lladach; D. Ramakrishnan; I. Riley; C.K. O'Sullivan
    Department: Enginyeria Química
    URV's Author/s: ACERO SÁNCHEZ, JOSEP LLUÍS; HENRY ., OLIVIER; H. Joda; B. Werne Solnestam; L. Kvastad; E. Johansson; P. Akan; J. Lundeberg; N. Lladach; D. Ramakrishnan; I. Riley; O'SULLIVAN ., CIARA
    Keywords: Engineering controlled terms Electrochemical detection Engineering main heading
    Abstract: Asymmetric multiplex ligation-dependent probe amplification (MLPA) was developed for the amplification of seven breast cancer related mRNA markers and the MLPA products were electrochemically detected via hybridization. Seven breast cancer genetic markers were amplified by means of the MLPA reaction, which allows for multiplex amplification of multiple targets with a single primer pair. Novel synthetic MLPA probes were designed to include a unique barcode sequence in each amplified gene. Capture probes complementary to each of the barcode sequences were immobilized on each electrode of a low-cost electrode microarray manufactured on standard printed circuit board (PCB) substrates. The functionalised electrodes were exposed to the single-stranded MLPA products and following hybridization, a horseradish peroxidase (HRP)-labelled DNA secondary probe complementary to the amplified strand completed the genocomplex, which was electrochemically detected following substrate addition. The electrode arrays fabricated using PCB technology exhibited an excellent electrochemical performance, equivalent to planar photolithographically-fabricated gold electrodes, but at a vastly reduced cost (>50 times lower per array). The optimised system was demonstrated to be highly specific with negligible cross-reactivity allowing the simultaneous detection of the seven mRNA markers, with limits of detections as low as 25 pM. This approach provides a novel strategy for the genetic profiling of tumour cells via integrated "amplification-to-detection".
    Research group: Group of Nanobiotechnology and Bioanalysis
    Thematic Areas: Enginyeria química Ingeniería química Chemical engineering
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 0956-5663
    Author identifier: n/a; n/a; n/a; n/a; n/a; n/a; n/a; n/a; n/a; n/a; n/a; 0000-0002-0965-4655
    Record's date: 2016-05-03
    Last page: 232
    Journal volume: 82
    Papper version: info:eu-repo/semantics/acceptedVersion
    Link to the original source: https://www.sciencedirect.com/science/article/pii/S0956566316302925?via%3Dihub
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Article's DOI: 10.1016/j.bios.2016.04.018
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2016
    First page: 224
    Publication Type: Article Artículo Article
  • Keywords:

    Enginyeria química
    Sensors electroquímics
    Engineering controlled terms
    Electrochemical detection
    Engineering main heading
    Enginyeria química
    Ingeniería química
    Chemical engineering
    0956-5663
  • Documents:

  • Cerca a google

    Search to google scholar