Articles producció científica> Enginyeria Informàtica i Matemàtiques

Closed formulae for the strong metric dimension of lexicographic product graphs

  • Identification data

    Identifier: PC:1990
    Authors:
    Juan A. Rodríguez-VelázquezDorota KuziakIsmael G. Yero
    Abstract:
    Given a connected graph G, a vertex w ¿ V(G) strongly resolves two vertices u,v ¿ V(G) if there exists some shortest u - w path containing v or some shortest v - w path containing u. A set S of vertices is a strong metric generator for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong metric generator for G is called the strong metric dimension of G. In this paper we obtain several relationships between the strong metric dimension of the lexicographic product of graphs and the strong metric dimension of its factor graphs. © 2016, University of Zielona Gora.
  • Others:

    Author, as appears in the article.: Juan A. Rodríguez-Velázquez; Dorota Kuziak; Ismael G. Yero
    Department: Enginyeria Informàtica i Matemàtiques
    URV's Author/s: RODRÍGUEZ VELÁZQUEZ, JUAN ALBERTO; Dorota Kuziak; Ismael G. Yero
    Keywords: Strong metric dimension Lexicographic product graphs Strong metric basis
    Abstract: Given a connected graph G, a vertex w ¿ V(G) strongly resolves two vertices u,v ¿ V(G) if there exists some shortest u - w path containing v or some shortest v - w path containing u. A set S of vertices is a strong metric generator for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong metric generator for G is called the strong metric dimension of G. In this paper we obtain several relationships between the strong metric dimension of the lexicographic product of graphs and the strong metric dimension of its factor graphs. © 2016, University of Zielona Gora.
    Research group: Matemática Discreta
    Thematic Areas: Enginyeria informàtica Ingeniería informática Computer engineering
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 1234-3099
    Author identifier: 0000-0002-9082-7647; N/A; 0000-0002-1619-1572
    Record's date: 2016-12-01
    Last page: 1064
    Journal volume: 36
    Papper version: info:eu-repo/semantics/publishedVersion
    Link to the original source: https://www.dmgt.uz.zgora.pl/publish/volume.php?volume=36_4
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Article's DOI: 10.7151/dmgt.1911
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2016
    First page: 1051
    Publication Type: Article Artículo Article
  • Keywords:

    Grafs, Teoria de
    Strong metric dimension
    Lexicographic product graphs
    Strong metric basis
    Enginyeria informàtica
    Ingeniería informática
    Computer engineering
    1234-3099
  • Documents:

  • Cerca a google

    Search to google scholar