Author, as appears in the article.: Villadelprat, J.; Mañosas, F.; Rojas, D.
Department: Enginyeria Informàtica i Matemàtiques
URV's Author/s: VILLADELPRAT YAGÜE, JORDI; Mañosas, F.; Rojas, D.
Keywords: bifurcation center Critical periodic orbit
Abstract: In this paper we study the period function of x¨=(1+x)p¿(1+x)q, with p,q¿R and p>q. We prove three independent results. The first one establishes some regions in the parameter space where the corresponding center has a monotonous period function. This result extends the previous ones by Miyamoto and Yagasaki for the case q=1. The second one deals with the bifurcation of critical periodic orbits from the center. The third one is addressed to the critical periodic orbits that bifurcate from the period annulus of each one of the three isochronous centers in the family when perturbed by means of a one-parameter deformation. These three results, together with the ones that we obtained previously on the issue, lead us to propose a conjectural bifurcation diagram for the global behaviour of the period function of the family.
Research group: Discrete and Continuous Dynamical Systems (DCDYNSYS)
Thematic Areas: Matemàtiques Matemáticas Mathematics
licence for use: https://creativecommons.org/licenses/by/3.0/es/
ISSN: 0022-247X
Author identifier: ; 0000-0003-2535-0501; n/a
Record's date: 2017-04-21
Last page: 208
Journal volume: 452
Papper version: info:eu-repo/semantics/acceptedVersion
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Entity: Universitat Rovira i Virgili
Journal publication year: 2017
First page: 188
Publication Type: Article Artículo Article