Articles producció científica> Enginyeria Informàtica i Matemàtiques

Local synthesis for disclosure limitation that satisfies probabilistic k-anonymity criterion

  • Identification data

    Identifier: PC:2893
    Authors:
    Oganian, A.Domingo-Ferrer, J.
    Abstract:
    Filiació URV: SI DOI: N/D URL: http://www.tdp.cat/issues16/vol10n01.php
  • Others:

    Author, as appears in the article.: Oganian, A.; Domingo-Ferrer, J.
    Department: Enginyeria Informàtica i Matemàtiques
    URV's Author/s: OGANIAN , ANNA; DOMINGO FERRER, JOSEP
    Keywords: Probabilistic k-anonymity Mixture model Expectation-Maximization (EM) algorithm
    Abstract: Before releasing databases which contain sensitive information about individuals, data publishers must apply Statistical Disclosure Limitation (SDL) methods to them, in order to avoid disclosure of sensitive information on any identifiable data subject. SDL methods often consist of masking or synthesizing the original data records in such a way as to minimize the risk of disclosure of the sensitive information while providing data users with accurate information about the population of interest. In this paper we propose a new scheme for disclosure limitation, based on the idea of local synthesis of data. Our approach is predicated on model-based clustering. The proposed method satisfies the requirements of k-anonymity; in particular we use a variant of the k-anonymity privacy model, namely probabilistic k-anonymity, by incorporating constraints on cluster cardinality. Regarding data utility, for continuous attributes, we exactly preserve means and covariances of the original data, while approximately preserving higher-order moments and analyses on subdomains (defined by clusters and cluster combinations). For both continuous and categorical data, our experiments with medical data sets show that, from the point of view of data utility, local synthesis compares very favorably with other methods of disclosure limitation including the sequential regression approach for synthetic data generation.
    Research group: Seguretat i Privadesa
    Thematic Areas: Mathematics Matemáticas Matemàtiques
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 1888-5063
    Author identifier: ; 0000-0001-7213-4962
    Record's date: 2017-05-26
    Last page: 81
    Journal volume: 10
    Awards and grants: ICREA Acadèmia
    Papper version: info:eu-repo/semantics/publishedVersion
    Link to the original source: http://www.tdp.cat/issues16/vol10n01.php
    Funding program: european; FP7; DwB plan; ARES; 2010 CSD2007-00004 plan; TIN; TIN2011-27076-C03-01 altres; Grups consolidats; 2009 SGR 1135
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2017
    First page: 61
    Publication Type: Article Artículo Article
  • Keywords:

    Xifratge (Informàtica)
    Protecció de dades
    Probabilistic k-anonymity
    Mixture model
    Expectation-Maximization (EM) algorithm
    Mathematics
    Matemáticas
    Matemàtiques
    1888-5063
  • Documents:

  • Cerca a google

    Search to google scholar