Articles producció científica> Química Física i Inorgànica

Transparent glass-ceramics with (Eu3+,Yb3+):YNbO4 nanocrystals: Crystallization, structure, optical spectroscopy and cooperative upconversion

  • Identification data

    Identifier: PC:3331
    Authors:
    Mateos, X.Loiko, P.Dymshits, O.Alekseeva, I.Zhilin, A.Tsenter, M.Vilejshikova, E.Bogdanov, KYumashev, K
    Abstract:
    . In the present work, we report on a comprehensive study of crystallization, structure and optical spectroscopy of transparent glass-ceramics with (Eu3+,Yb3+):YNbO4 nanocrystals synthesized by a secondary heat-treatment of Li2O–Al2O3–SiO2 glasses doped with rare-earth oxides and nucle-ated by Nb2O5, for the first time, to the best of our knowledge. Heat treatments result in volume crystallization of RENbO4 with the sizes of 4 – 15 nm. Crystals of rare-earth niobates with disor-dered fluorite structure (T’) appear during heat-treatment at 720–740 °C for 6 h, crystals with tetragonal structure (T) appear at higher temperatures or longer durations of heat-treatment, and at >1000 °C the transformation to a monoclinic form (M) begins. Rare-earth niobates act as nu-cleating agents for bulk crystallization of β-quartz solid solutions, the main crystalline phase of the glass-ceramics. Optical spectroscopy confirms entering of both Eu3+ and Yb3+ ions into the RENbO4 nanophase and their specroscopic properties changes according to the T’ → T → M phase transformations. Under UV excitation, glass-ceramics heat-treated at 900 °C provide in-tense red emission with the color coordinates x = 0.665, y = 0.335 (CIE 1931). At 1000 °C, a par-tial reduction of Eu3+ to Eu2+ is observed which allows for tuning of color properties of emission. When excited in the near-IR by an InGaAs diode, the initial glass and glass-ceramics show red cooperative upconversion due to the 2Yb3+ → Eu3+ energy transfer. The efficiency of the latter is ~10%. The developed materials due to the good emission and thermo-mechanical properties are promising for the development of color-tunable red phosphors.
  • Others:

    Author, as appears in the article.: Mateos, X. ; Loiko, P. ; Dymshits, O.; Alekseeva, I.; Zhilin, A. ; Tsenter, M. ; Vilejshikova, E. ; Bogdanov, K; Yumashev, K
    Department: Química Física i Inorgànica
    URV's Author/s: MATEOS FERRÉ, XAVIER; Loiko, P. ; Dymshits, O.; Alekseeva, I.; Zhilin, A. ; Tsenter, M. ; Vilejshikova, E. ; Bogdanov, K; Yumashev, K
    Keywords: Glass¿ceramics Orthoniobates Europium
    Abstract: . In the present work, we report on a comprehensive study of crystallization, structure and optical spectroscopy of transparent glass-ceramics with (Eu3+,Yb3+):YNbO4 nanocrystals synthesized by a secondary heat-treatment of Li2O–Al2O3–SiO2 glasses doped with rare-earth oxides and nucle-ated by Nb2O5, for the first time, to the best of our knowledge. Heat treatments result in volume crystallization of RENbO4 with the sizes of 4 – 15 nm. Crystals of rare-earth niobates with disor-dered fluorite structure (T’) appear during heat-treatment at 720–740 °C for 6 h, crystals with tetragonal structure (T) appear at higher temperatures or longer durations of heat-treatment, and at >1000 °C the transformation to a monoclinic form (M) begins. Rare-earth niobates act as nu-cleating agents for bulk crystallization of β-quartz solid solutions, the main crystalline phase of the glass-ceramics. Optical spectroscopy confirms entering of both Eu3+ and Yb3+ ions into the RENbO4 nanophase and their specroscopic properties changes according to the T’ → T → M phase transformations. Under UV excitation, glass-ceramics heat-treated at 900 °C provide in-tense red emission with the color coordinates x = 0.665, y = 0.335 (CIE 1931). At 1000 °C, a par-tial reduction of Eu3+ to Eu2+ is observed which allows for tuning of color properties of emission. When excited in the near-IR by an InGaAs diode, the initial glass and glass-ceramics show red cooperative upconversion due to the 2Yb3+ → Eu3+ energy transfer. The efficiency of the latter is ~10%. The developed materials due to the good emission and thermo-mechanical properties are promising for the development of color-tunable red phosphors.
    Research group: Física i Cristal.lografia de Materials
    Thematic Areas: Química Química Chemistry
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 0022-2313
    Author identifier: 0000-0003-1940-1990; ; ; ; ; ; ; ;
    Record's date: 2018-09-25
    Last page: 73
    Journal volume: 179
    Papper version: info:eu-repo/semantics/submittedVersion
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2016
    First page: 64
    Publication Type: Article Artículo Article
  • Keywords:

    Iterbi
    Luminiscència
    Glass¿ceramics
    Orthoniobates
    Europium
    Química
    Química
    Chemistry
    0022-2313
  • Documents:

  • Cerca a google

    Search to google scholar