Author, as appears in the article.: Poblet, JM; Lopez, X; Clotet, A; Zhongling Lang; Isabel Maicas Gabas; Jesús M. de la Fuente; Scott G. Mitchell
Department: Química Física i Inorgànica
URV's Author/s: POBLET RIUS, JOSEP MARIA; LÓPEZ FERNÁNDEZ, JAVIER; CLOTET ROMEU, ANNA MARIA; Zhongling Lang; Isabel Maicas Gabas; Jesús M. de la Fuente; Scott G. Mitchell
Abstract: Polyoxometalate (POM)-mediated reduction and nucleation mechanisms in nanoparticle (NP) syntheses
are still largely unknown. We carried out comprehensive theoretical analysis using density functional
theory (DFT) to gain insight into the molecular and electronic changes that occur during the reduction
of HAuIIICl4 with the Kabanos-type polyoxomolybdate, [Na{(MoV2
O4)3(m2-O)3(m2-SO3)3(m6-SO3)}2]15. In
the system presented herein the electrons are supplied by the POM, making the computational
thermodynamic analysis more feasible. Our results reveal that this particular POM is a multi-electron
source and the proton-coupled electron transfer (PCET) greatly promotes the reduction process. Based
on the energy and molecular orbital studies of the intermediate species the reduction of AuIII to AuI is
shown to be thermodynamically favourable, and a low HOMO–LUMO gap of the POM–Au superstructure
is advantageous for electron transfer. By modelling the reduction of three couples of AuIII - AuI by the
same POM unit, it is proposed that the reduced polyoxomolybdate is finally fully oxidised. The subjacent
idea of using the Kabanos POM was confirmed by comprehensive experimental characterisation of POMstabilised
gold nanoparticles (AuNPs@POM). Present theoretical analysis suggests that protons have a
significant influence on the final AuI to Au0 reduction step that ultimately leads to colloidal AuNPs@POM.
Research group: Química Quàntica
Thematic Areas: Química Química Chemistry
licence for use: https://creativecommons.org/licenses/by/3.0/es/
ISSN: 1144-0546
Author identifier: 0000-0002-4533-0623; 0000-0003-0322-6796; 0000-0003-0543-6607; ; ; ;
Record's date: 2019-01-14
Last page: 1038
Journal volume: 40
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://pubs.rsc.org/en/content/articlelanding/2016/NJ/C5NJ02773J#!divAbstract
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Article's DOI: 10.1039/c5nj02773j
Entity: Universitat Rovira i Virgili
Journal publication year: 2016
First page: 1029
Publication Type: Article Artículo Article