Articles producció científica> Bioquímica i Biotecnologia

The STF2p hydrophilin from Saccharomyces cerevisiae is required for dehydration stress tolerance

  • Identification data

    Identifier: PC:575
    Authors:
    López-Martínez, G.Rodríguez-Porrata, B.Margalef-Català, M.Cordero-Otero, R.
    Abstract:
    10.1371/journal.pone.0033324
  • Others:

    Author, as appears in the article.: López-Martínez, G. Rodríguez-Porrata, B. Margalef-Català, M. Cordero-Otero, R.
    Papper version: info:eu-repo/semantics/publishedVersion
    Department: Bioquímica i Biotecnologia
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    URV's Author/s: Gema López-Martínez, Boris Rodríguez-Porrata, Mar Margalef-Català, Ricardo Cordero-Otero
    Abstract: The yeast Saccharomyces cerevisiae is able to overcome cell dehydration; cell metabolic activity is arrested during this period but restarts after rehydration. The yeast genes encoding hydrophilin proteins were characterised to determine their roles in the dehydration-resistant phenotype, and STF2p was found to be a hydrophilin that is essential for survival after the desiccation-rehydration process. Deletion of STF2 promotes the production of reactive oxygen species and apoptotic cell death during stress conditions, whereas the overexpression of STF2, whose gene product localises to the cytoplasm, results in a reduction in ROS production upon oxidative stress as the result of the antioxidant capacity of the STF2p protein.
    Entity: Universitat Rovira i Virgili.
    Thematic Areas: Saccharomyces cerevisiae protein
    Journal publication year: 2012
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 1932-6203
    Journal volume: 7
  • Keywords:

    Saccharomyces cerevisiae protein
    1932-6203
  • Documents:

  • Cerca a google

    Search to google scholar