Author, as appears in the article.: Mabood F., Gilani S., Albroumi M., Alameri S., Al Nabhani M., Jabeen F., Hussain J., Al-Harrasi A., Boqué R., Farooq S., Hamaed A., Naureen Z., Khan A., Hussain Z.
Department: Química Analítica i Química Orgànica
URV's Author/s: Boqué Martí, Ricard
Keywords: Pls-da Pls regression Pca Nir-spectroscopy Nir Multivariate analysis Gasoline Adulteration
Abstract: Super premium 95 octane gasoline is a special blend of petrol with a higher octane rating that can produce higher engine power, as well as knock-free performance for cars with a high-octane requirement. Super premium grade gasoline 95 is often adulterated with cheaper Premium grade 91 that lowers the octane number of the Super premium gasoline. In the present study a new Near Infrared (NIR) spectroscopy combined with multivariate analysis was developed to detect as well as to quantify the level of Premium 91 gasoline adulteration in Super premium 95 octane gasolines. In this study standard samples of Premium 91 and Super premium 95 octane gasoline were collected from Oman Oil Refineries and Petroleum Industries Company SAOC (ORPIC) and were investigated. Super premium 95 samples were then adulterated with eighteen different percentage levels: 0%, 1%, 3%, 5%, 7%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, and 75% of Premium 91 gasoline. All samples were measured using NIR spectroscopy in absorption mode in the wavelength range from 700 to 2500 nm. The multivariate methods like PCA, PLSDA and PLS regression were applied for statistical analysis of the obtained NIR spectral data. Partial least-squares discriminant analysis (PLSDA) was used to check the discrimination between the pure and adulterated gasoline samples. For PLSDA model the R-square value obtained was 0.99 with 0.012 RMSE. Furthermore, PLS regression model was also built to quantify the levels of Premium 91 adulterant in Super Premium 95 gasoline samples. The PLS regression model was obtained with the R-square 0.99 and with 1.33 RMSECV value having good prediction with RMSEP value 1.35 and correlation of 0.99. This newly developed method is having lower limit of detection less than 1.5% level for Premium 91 adulteration. It was desirable to have simple, rapid and sensitive methods to detect the presence of one petroleum product in another.
Thematic Areas: Saúde coletiva Química Organic chemistry Odontología Medicina i Materiais Matemática / probabilidade e estatística Interdisciplinar Geociências General chemical engineering Fuel technology Farmacia Ensino Engineering, chemical Engenharias iv Engenharias iii Engenharias ii Engenharias i Energy engineering and power technology Energy & fuels Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Chemical engineering (miscellaneous) Chemical engineering (all) Biotecnología Biodiversidade Astronomia / física
ISSN: 00162361
Author's mail: ricard.boque@urv.cat
Author identifier: 0000-0001-7311-4824
Last page: 396
Record's date: 2024-09-07
Journal volume: 197
Papper version: info:eu-repo/semantics/acceptedVersion
Link to the original source: https://www.sciencedirect.com/science/article/pii/S0016236117301874
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Fuel. 197 388-396
APA: Mabood F., Gilani S., Albroumi M., Alameri S., Al Nabhani M., Jabeen F., Hussain J., Al-Harrasi A., Boqué R., Farooq S., Hamaed A., Naureen Z., Khan A (2017). Detection and estimation of Super premium 95 gasoline adulteration with Premium 91 gasoline using new NIR spectroscopy combined with multivariate methods. Fuel, 197(), 388-396. DOI: 10.1016/j.fuel.2017.02.041
Article's DOI: 10.1016/j.fuel.2017.02.041
Entity: Universitat Rovira i Virgili
Journal publication year: 2017
First page: 388
Publication Type: Journal Publications