Author, as appears in the article.: Toledo Camacho, Sandra Yurani; Rey, Ana; Dolores Hernandez-Alonso, Maria; Llorca, Jordi; Medina, Francisco; Contreras, Sandra
Department: Enginyeria Química
URV's Author/s: Contreras Iglesias, Sandra / Medina Cabello, Francisco
Keywords: Sacrificial agents Quantum efficiency Photocatalysis Palladium catalysts Low palladium addition Hydrogen
Abstract: © 2018 Elsevier B.V. Solar light is inexhaustible, and therefore to take advantage of this energy it is necessary to develop materials capable of absorbing energy in the widest range of the solar spectra. Although TiO2is one of the most studied photocatalysts, it only absorbs in the UV range. With the aim of increasing this light absorption towards the visible range, in this study Pd and WO3were supported on bare TiO2to determine their photocatalytic properties for generating hydrogen from water-methanol mixtures under UVA and solar irradiation. Several parameters for the hydrogen production, such as the amount of Pd and the catalyst as well as the influence of the water matrix were studied. These catalytic materials were characterized by means of inductively coupled plasma with an optical emission spectrophotometer, nitrogen adsorption-desorption isotherms, X-ray diffraction, high resolution – transmission electron microscopy, X-ray photoelectron spectroscopy and diffuse reflectance UV–Vis spectroscopy. The hydrogen evolution was monitored by online gas chromatography. The incorporation of a small amount of Pd (lower than 0.01 wt%) produced a large increase in the hydrogen production. Furthermore, adding WO3on the bare titania also increased hydrogen generation. The highest quantum efficiency obtained in this work under solar radiation was 7.7% by the catalyst based on palladium supported on nanotubes of titanium dioxide and tungsten trioxide (Pd/NT-WO3) using an aqueous solution of methanol (50 vol%).
Thematic Areas: Zootecnia / recursos pesqueiros Surfaces, coatings and films Surfaces and interfaces Saúde coletiva Química Physics, condensed matter Physics, applied Physics and astronomy (miscellaneous) Physics and astronomy (all) Odontología Medicina iii Medicina ii Materials science, coatings & films Materiais Matemática / probabilidade e estatística Interdisciplinar Geociências General physics and astronomy General chemistry Farmacia Ensino Engenharias iv Engenharias iii Engenharias ii Engenharias i Condensed matter physics Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Chemistry, physical Chemistry (miscellaneous) Chemistry (all) Biotecnología Biodiversidade Astronomia / física
licence for use: https://creativecommons.org/licenses/by/3.0/es/
ISSN: 01694332
Author's mail: sandra.contreras@urv.cat francesc.medina@urv.cat
Author identifier: 0000-0001-8917-4733 0000-0002-3111-1542
Record's date: 2024-10-12
Papper version: info:eu-repo/semantics/acceptedVersion
Link to the original source: https://www.sciencedirect.com/science/article/pii/S0169433218314193
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Applied Surface Science. 455 570-580
APA: Toledo Camacho, Sandra Yurani; Rey, Ana; Dolores Hernandez-Alonso, Maria; Llorca, Jordi; Medina, Francisco; Contreras, Sandra (2018). Pd/TiO2-WO3photocatalysts for hydrogen generation from water-methanol mixtures. Applied Surface Science, 455(), 570-580. DOI: 10.1016/j.apsusc.2018.05.122
Article's DOI: 10.1016/j.apsusc.2018.05.122
Entity: Universitat Rovira i Virgili
Journal publication year: 2018
Publication Type: Journal Publications