Author, as appears in the article.: Gutierrez, Alicia; Beltran, Gemma; Warringer, Jonas; Guillamon, Jose M.;
Department: Bioquímica i Biotecnologia
URV's Author/s: Beltran Casellas, Gemma / GUILLAMÓN NAVARRO, JOSÉ MANUEL
Keywords: Trait Synthetic grape Saccharomyces-cerevisiae strains Methionine salvage pathway Metabolism Enological conditions Catabolite repression Budding yeast Assimilable nitrogen Alcoholic fermentation
Abstract: The capacity of wine yeast to utilize the nitrogen available in grape must directly correlates with the fermentation and growth rates of all wine yeast fermentation stages and is, thus, of critical importance for wine production. Here we precisely quantified the ability of low complexity nitrogen compounds to support fast, efficient and rapidly initiated growth of four commercially important wine strains. Nitrogen substrate abundance in grape must failed to correlate with the rate or the efficiency of nitrogen source utilization, but well predicted lag phase length. Thus, human domestication of yeast for grape must growth has had, at the most, a marginal impact on wine yeast growth rates and efficiencies, but may have left a surprising imprint on the time required to adjust metabolism from non growth to growth. Wine yeast nitrogen source utilization deviated from that of the lab strain experimentation, but also varied between wine strains. Each wine yeast lineage harbored nitrogen source utilization defects that were private to that strain. By a massive hemizygote analysis, we traced the genetic basis of the most glaring of these defects, near inability of the PDM wine strain to utilize methionine, as consequence of mutations in its ARO8, ADE5,7 and VBA3 alleles. We also identified candidate causative mutations in these genes. The methionine defect of PDM is potentially very interesting as the strain can, in some circumstances, overproduce foul tasting H2S, a trait which likely stems from insufficient methionine catabolization. The poor adaptation of wine yeast to the grape must nitrogen environment, and the presence of defects in each lineage, open up wine strain optimization through biotechnological endeavors. © 2013 Gutiérrez et al.
Thematic Areas: Zootecnia / recursos pesqueiros Sociology Sociología Serviço social Saúde coletiva Química Psychology Psicología Planejamento urbano e regional / demografia Odontología Nutrição Multidisciplinary sciences Multidisciplinary Medicine (miscellaneous) Medicina veterinaria Medicina iii Medicina ii Medicina i Materiais Matemática / probabilidade e estatística Linguística e literatura Letras / linguística Interdisciplinary research in the social sciences Interdisciplinar Human geography and urban studies History & philosophy of science Historia Geografía Geociências General medicine General biochemistry,genetics and molecular biology General agricultural and biological sciences Farmacia Environmental studies Ensino Engenharias iv Engenharias iii Engenharias ii Engenharias i Enfermagem Educação física Educação Economia Direito Demography Comunicação e informação Ciências sociais aplicadas i Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência política e relações internacionais Ciência de alimentos Ciência da computação Biotecnología Biology Biodiversidade Biochemistry, genetics and molecular biology (miscellaneous) Astronomia / física Arquitetura, urbanismo e design Archaeology Antropologia / arqueologia Anthropology Agricultural and biological sciences (miscellaneous) Administração, ciências contábeis e turismo Administração pública e de empresas, ciências contábeis e turismo
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: gemma.beltran@urv.cat
Author identifier: 0000-0002-7071-205X
Record's date: 2024-04-20
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0067166
Papper original source: Plos One. 8 (6): e67166-
APA: Gutierrez, Alicia; Beltran, Gemma; Warringer, Jonas; Guillamon, Jose M.; (2013). Genetic Basis of Variations in Nitrogen Source Utilization in Four Wine Commercial Yeast Strains. Plos One, 8(6), e67166-. DOI: 10.1371/journal.pone.0067166
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Article's DOI: 10.1371/journal.pone.0067166
Entity: Universitat Rovira i Virgili
Journal publication year: 2013
Publication Type: Journal Publications