Author, as appears in the article.: Gonzalez Yero, Ismael; Alberto Rodriguez-Velazquez, Juan
Department: Enginyeria Informàtica i Matemàtiques
URV's Author/s: GONZÁLEZ YERO, ISMAEL / Rodríguez Velázquez, Juan Alberto
Keywords: Strong product graphs Roman domination number Domination number Cartesian product graphs
Abstract: A map f : V → {0, 1, 2} is a Roman dominating function for G if for every vertex v with f(v) = 0, there exists a vertex u, adjacent to v, with f(u) = 2. The weight of a Roman dominating function is f(V ) = ∑u∈V f(u). The minimum weight of a Roman dominating function on G is the Roman domination number of G. In this paper we study the Roman domination number of Cartesian product graphs and strong product graphs.
Thematic Areas: Mathematics, applied Mathematics Matemática / probabilidade e estatística Engenharias iii Discrete mathematics and combinatorics Ciência da computação Applied mathematics Analysis
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: juanalberto.rodriguez@urv.cat
Author identifier: 0000-0002-9082-7647
Record's date: 2024-10-26
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://doiserbia.nb.rs/Article.aspx?id=1452-86301300017G
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Applicable Analysis And Discrete Mathematics. 7 (2): 262-274
APA: Gonzalez Yero, Ismael; Alberto Rodriguez-Velazquez, Juan (2013). Roman domination in cartesian product graphs and strong product graphs. Applicable Analysis And Discrete Mathematics, 7(2), 262-274. DOI: 10.2298/AADM130813017G
Article's DOI: 10.2298/AADM130813017G
Entity: Universitat Rovira i Virgili
Journal publication year: 2013
Publication Type: Journal Publications