Author, as appears in the article.: Sergio Borraz-Martínez, Ricard Boqué, Joan Simó, Mariàngela Mestre, Anna Gras
Department: Química Analítica i Química Orgànica
URV's Author/s: Boqué Martí, Ricard
Keywords: Varietal purity Reflectance spectroscopy Pls-da Optimization Nir Leaf analysis Discrimination Component analysis Asca Almond trees pls-da optimization nir leaf analysis almond trees
Abstract: Near-infrared spectroscopy (NIRS) can be a faster and more economical alternative to traditional methods for screening varietal mixtures of nursery plants during the propagation process to ensure varietal purity and to avoid errors in the dispatch batches. The global objective of this work was to develop and optimize a NIR spectral collection method for construction of robust multivariate discrimination models. Three different varieties of Prunus dulcis (Avijor, Guara, and Pentacebas) of agricultural interest were used for this study. Sources of variation were investigated, including the position of the leaves on the trees, differences among trees of the same variety, and differences at the varietal level. Three types of processed samples were investigated. Fresh leaves, dried leaves, and dried leaves in powder form were included in each analysis. A study of spectral pre-treatment methods was also performed, and multivariate methods were applied to analyze the influence of different factors on classification. These included principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and ANOVA simultaneous component analysis (ASCA). The results indicated that variety was the most important factor for classification. The spectral pre-treatment that provided the best results was a combination of standard normal variate (SNV), Savitzky-Golay first derivative, and mean-centering methods. With regard to the type of processed sample, the highest percentages of correct classifications were obtained with fresh and dried powdered leaves at both the training set and test set validation levels. This study represents the first step towards the consolidation of NIRS as a method to identify Prunus dulcis varieties.Copyright © 2019 Elsevier B.V. All rights reserved.
Thematic Areas: Zootecnia / recursos pesqueiros Spectroscopy Saúde coletiva Química Nutrição Medicina veterinaria Medicina iii Medicina ii Medicina i Materiais Interdisciplinar Geociências General medicine General chemistry Farmacia Ensino Engenharias iv Engenharias iii Engenharias ii Engenharias i Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Chemistry, analytical Chemistry (miscellaneous) Biotecnología Biodiversidade Biochemistry Astronomia / física Analytical chemistry Administração pública e de empresas, ciências contábeis e turismo
ISSN: 00399140
Author's mail: ricard.boque@urv.cat
Author identifier: 0000-0001-7311-4824
Last page: 328
Record's date: 2023-02-22
Journal volume: 204
Papper version: info:eu-repo/semantics/acceptedVersion
Link to the original source: https://www.sciencedirect.com/science/article/abs/pii/S0039914019305995
Papper original source: Talanta. 204 320-328
APA: Sergio Borraz-Martínez, Ricard Boqué, Joan Simó, Mariàngela Mestre, Anna Gras (2019). Development of a methodology to analyze leaves from Prunus dulcis varieties using near infrared spectroscopy. Talanta, 204(), 320-328. DOI: 10.1016/j.talanta.2019.05.105
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Article's DOI: 10.1016/j.talanta.2019.05.105
Entity: Universitat Rovira i Virgili
Journal publication year: 2019
First page: 320
Publication Type: Journal Publications