Author, as appears in the article.: Kumar Singh, Vivek; Rashwan, Hatem A; Romani, Santiago; Akram, Farhan; Pandey, Nidhi; Kamal Sarker, Md Mostafa; Saleh, Adel; Arenas, Meritxell; Arquez, Miguel; Puig, Domenec; Torrents-Barrena, Jordina
Department: Ciències Mèdiques Bàsiques Enginyeria Informàtica i Matemàtiques
URV's Author/s: Abdellatif Fatahallah Ibrahim Mahmoud, Hatem / AKRAM, FARHAN / Arenas Prat, Meritxell / Pandey, Nidhi / Puig Valls, Domènec Savi / Romaní Also, Santiago
Keywords: Tumor segmentation and shape classification Mass Mammograms Convolutional neural network Conditional generative adversarial network Computer-aided detection
Abstract: © 2019 Elsevier Ltd Mammogram inspection in search of breast tumors is a tough assignment that radiologists must carry out frequently. Therefore, image analysis methods are needed for the detection and delineation of breast tumors, which portray crucial morphological information that will support reliable diagnosis. In this paper, we proposed a conditional Generative Adversarial Network (cGAN) devised to segment a breast tumor within a region of interest (ROI) in a mammogram. The generative network learns to recognize the tumor area and to create the binary mask that outlines it. In turn, the adversarial network learns to distinguish between real (ground truth) and synthetic segmentations, thus enforcing the generative network to create binary masks as realistic as possible. The cGAN works well even when the number of training samples are limited. As a consequence, the proposed method outperforms several state-of-the-art approaches. Our working hypothesis is corroborated by diverse segmentation experiments performed on INbreast and a private in-house dataset. The proposed segmentation model, working on an image crop containing the tumor as well as a significant surrounding area of healthy tissue (loose frame ROI), provides a high Dice coefficient and Intersection over Union (IoU) of 94% and 87%, respectively. In addition, a shape descriptor based on a Convolutional Neural Network (CNN) is proposed to classify the generated masks into four tumor shapes: irregular, lobular, oval and round. The proposed shape descriptor was trained on DDSM, since it provides shape ground truth (while the other two datasets does not), yielding an overall accuracy of 80%, which outperforms the current state-of-the-art.
Thematic Areas: Química Operations research & management science Medicina iii Medicina ii Medicina i Materiais Matemática / probabilidade e estatística Interdisciplinar Geociências General engineering Farmacia Engineering, electrical & electronic Engineering (miscellaneous) Engineering (all) Engenharias iv Engenharias iii Engenharias ii Engenharias i Enfermagem Educação Economia Direito Computer science, artificial intelligence Computer science applications Ciências sociais aplicadas i Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência da computação Biotecnología Biodiversidade Astronomia / física Artificial intelligence Arquitetura, urbanismo e design Administração, ciências contábeis e turismo Administração pública e de empresas, ciências contábeis e turismo
licence for use: https://creativecommons.org/licenses/by/3.0/es/
ISSN: 09574174
Author's mail: hatem.abdellatif@urv.cat meritxell.arenas@urv.cat santiago.romani@urv.cat domenec.puig@urv.cat
Author identifier: 0000-0001-5421-1637 0000-0003-0815-2570 0000-0001-6673-9615 0000-0002-0562-4205
Record's date: 2024-09-21
Papper version: info:eu-repo/semantics/submittedVersion
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Expert Systems With Applications. 139 (UNSP 112855): 112855-
APA: Kumar Singh, Vivek; Rashwan, Hatem A; Romani, Santiago; Akram, Farhan; Pandey, Nidhi; Kamal Sarker, Md Mostafa; Saleh, Adel; Arenas, Meritxell; Arquez (2020). Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network. Expert Systems With Applications, 139(UNSP 112855), 112855-. DOI: 10.1016/j.eswa.2019.112855
Entity: Universitat Rovira i Virgili
Journal publication year: 2020
Publication Type: Journal Publications