Author, as appears in the article.: Demir-Duz, Hande; Ayyildiz, Ozgul; Akturk, Ali Sinan; Alvarez, Mayra G.; Contreras, Sandra;
Department: Enginyeria Química
URV's Author/s: Contreras Iglesias, Sandra / GARCÍA ALVAREZ, MAYRA
Keywords: Solar-assisted aops Refinery wastewater Photo-fenton Photo-catalysis
Abstract: To undertake a better water management in Oil&Gas sector, it is essential to decrease the wastewater generation by increasing the current reused water rates. Focused on this motivation, this study presents the performances of solar-assisted photo-Fenton and heterogeneous photo-catalysis on refinery wastewater treatment for reuse purposes with the aim of zero discharge. While initial tests were made on synthetic refinery wastewater, real case studies were performed with two types of refinery effluent in order to test the feasibility of using AOPs either as a secondary or tertiary treatment. Even though heterogeneous photo-catalysis and a combined process showed promising results for the treatment of the refinery effluents, photo-Fenton treatment revealed a superior effectiveness for application in both secondary and tertiary treatment, considering the improvements on TOC removal, toxicity and biodegradability. Photo-Fenton as secondary treatment resulted as efficient as the biological treatment, reaching final TOC values ca. 20 mg/L and 88% of COD removal presenting values lower than those achieved after the biological treatment. Moreover, a marked increase in the BOD5/COD ratio from 0.38 to 0.83 was obtained. Furthermore, as a tertiary treatment, photo-Fenton process either with H2O2/COD=10 and H2O2/Fe2+=50 or H2O2/COD=4 and H2O2/Fe2+=10 provided a final TOC value<4 mg/L. This result reveals the possibility to reuse the effluent in the refinery plant, thus increasing the sustainability.
Thematic Areas: Química Process chemistry and technology Medicina ii Materiais Interdisciplinar Geociências General environmental science Farmacia Environmental science (miscellaneous) Environmental science (all) Engineering, environmental Engineering, chemical Engenharias iv Engenharias iii Engenharias ii Engenharias i Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Chemistry, physical Catalysis Biotecnología Astronomia / física
licence for use: https://creativecommons.org/licenses/by/3.0/es/
ISSN: 18733883
Author's mail: sandra.contreras@urv.cat
Author identifier: 0000-0001-8917-4733
Record's date: 2023-02-18
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://www.sciencedirect.com/science/article/pii/S0926337319301365
Papper original source: Applied Catalysis B-Environmental. 248 341-348
APA: Demir-Duz, Hande; Ayyildiz, Ozgul; Akturk, Ali Sinan; Alvarez, Mayra G.; Contreras, Sandra; (2019). Approaching zero discharge concept in refineries by solar-assisted photo-Fenton and photo-catalysis processes. Applied Catalysis B-Environmental, 248(), 341-348. DOI: 10.1016/j.apcatb.2019.02.026
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Article's DOI: 10.1016/j.apcatb.2019.02.026
Entity: Universitat Rovira i Virgili
Journal publication year: 2019
Publication Type: Journal Publications