Articles producció científica> Enginyeria Química

Produced water treatment by advanced oxidation processes

  • Identification data

    Identifier: imarina:5872502
    Authors:
    Jimenez, SilviaAndreozzi, MarioMico, Maria MAlvarez, Mayra GContreras, Sandra
    Abstract:
    Different Advanced Oxidation Processes (AOPs) such as photocatalysis, Fenton-based processes and ozonationwere studied to include one of these technologies within an integrated solution for produced water (PW)polishing. Synthetic PW was prepared adding toluene, xylene, naphthalene, phenol, acetic and malonic acids toa seawater matrix. Despite that in all AOPs studied in this work BTEX and naphthalene were removed, the effi-ciency (in terms of TOC removal) of each treatment varied largely. Among these techniques, photocatalysiswas found to be the less effective for the treatment of PW, as TOC removals lower than 20% were obtained forthe best scenario after 4 h treatment. In the contrary, best results were obtained by ozonation combined withH2O2, where all the organic components were removed, including a high percentage of acetic acid, which wasnot abated by the rest of the AOPs studied. The optimum conditions for ozonation were 4 g h−1O3and1500 mg L−1H2O2at pH 10, where after 2 h a 74% of TOC removal was achieved and the acetic acid eliminationwas 78%. This condition enabled that ozonation process accounted for the lowest electric energy consumptionper order of target compound destruction regarding total organic carbon (TOC).© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).
  • Others:

    Author, as appears in the article.: Jimenez, Silvia; Andreozzi, Mario; Mico, Maria M; Alvarez, Mayra G; Contreras, Sandra
    Department: Enginyeria Química
    URV's Author/s: Contreras Iglesias, Sandra / GARCÍA ALVAREZ, MAYRA
    Keywords: Sono-fenton Photocatalysis Photo-fenton Ozonation Acetic acid photocatalysis photo-fenton ozonation acetic acid
    Abstract: Different Advanced Oxidation Processes (AOPs) such as photocatalysis, Fenton-based processes and ozonationwere studied to include one of these technologies within an integrated solution for produced water (PW)polishing. Synthetic PW was prepared adding toluene, xylene, naphthalene, phenol, acetic and malonic acids toa seawater matrix. Despite that in all AOPs studied in this work BTEX and naphthalene were removed, the effi-ciency (in terms of TOC removal) of each treatment varied largely. Among these techniques, photocatalysiswas found to be the less effective for the treatment of PW, as TOC removals lower than 20% were obtained forthe best scenario after 4 h treatment. In the contrary, best results were obtained by ozonation combined withH2O2, where all the organic components were removed, including a high percentage of acetic acid, which wasnot abated by the rest of the AOPs studied. The optimum conditions for ozonation were 4 g h−1O3and1500 mg L−1H2O2at pH 10, where after 2 h a 74% of TOC removal was achieved and the acetic acid eliminationwas 78%. This condition enabled that ozonation process accounted for the lowest electric energy consumptionper order of target compound destruction regarding total organic carbon (TOC).© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).
    Thematic Areas: Zootecnia / recursos pesqueiros Waste management and disposal Saúde coletiva Química Pollution Odontología Nutrição Medicina veterinaria Medicina iii Medicina ii Medicina i Materiais Matemática / probabilidade e estatística Interdisciplinar Historia Geografía Geociências Farmacia Environmental sciences Environmental engineering Environmental chemistry Ensino Engenharias iii Engenharias ii Engenharias i Enfermagem Direito Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Biotecnología Biodiversidade Astronomia / física
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 00489697
    Author's mail: sandra.contreras@urv.cat
    Author identifier: 0000-0001-8917-4733
    Record's date: 2024-10-12
    Papper version: info:eu-repo/semantics/publishedVersion
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Science Of The Total Environment. 666 12-21
    APA: Jimenez, Silvia; Andreozzi, Mario; Mico, Maria M; Alvarez, Mayra G; Contreras, Sandra (2019). Produced water treatment by advanced oxidation processes. Science Of The Total Environment, 666(), 12-21. DOI: 10.1016/j.scitotenv.2019.02.128
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2019
    Publication Type: Journal Publications
  • Keywords:

    Environmental Chemistry,Environmental Engineering,Environmental Sciences,Pollution,Waste Management and Disposal
    Sono-fenton
    Photocatalysis
    Photo-fenton
    Ozonation
    Acetic acid
    photocatalysis
    photo-fenton
    ozonation
    acetic acid
    Zootecnia / recursos pesqueiros
    Waste management and disposal
    Saúde coletiva
    Química
    Pollution
    Odontología
    Nutrição
    Medicina veterinaria
    Medicina iii
    Medicina ii
    Medicina i
    Materiais
    Matemática / probabilidade e estatística
    Interdisciplinar
    Historia
    Geografía
    Geociências
    Farmacia
    Environmental sciences
    Environmental engineering
    Environmental chemistry
    Ensino
    Engenharias iii
    Engenharias ii
    Engenharias i
    Enfermagem
    Direito
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências ambientais
    Ciências agrárias i
    Ciência de alimentos
    Ciência da computação
    Biotecnología
    Biodiversidade
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar