Author, as appears in the article.: Jimenez, Silvia; Andreozzi, Mario; Mico, Maria M; Alvarez, Mayra G; Contreras, Sandra
Department: Enginyeria Química
URV's Author/s: Contreras Iglesias, Sandra / GARCÍA ALVAREZ, MAYRA
Keywords: Sono-fenton Photocatalysis Photo-fenton Ozonation Acetic acid photocatalysis photo-fenton ozonation acetic acid
Abstract: Different Advanced Oxidation Processes (AOPs) such as photocatalysis, Fenton-based processes and ozonationwere studied to include one of these technologies within an integrated solution for produced water (PW)polishing. Synthetic PW was prepared adding toluene, xylene, naphthalene, phenol, acetic and malonic acids toa seawater matrix. Despite that in all AOPs studied in this work BTEX and naphthalene were removed, the effi-ciency (in terms of TOC removal) of each treatment varied largely. Among these techniques, photocatalysiswas found to be the less effective for the treatment of PW, as TOC removals lower than 20% were obtained forthe best scenario after 4 h treatment. In the contrary, best results were obtained by ozonation combined withH2O2, where all the organic components were removed, including a high percentage of acetic acid, which wasnot abated by the rest of the AOPs studied. The optimum conditions for ozonation were 4 g h−1O3and1500 mg L−1H2O2at pH 10, where after 2 h a 74% of TOC removal was achieved and the acetic acid eliminationwas 78%. This condition enabled that ozonation process accounted for the lowest electric energy consumptionper order of target compound destruction regarding total organic carbon (TOC).© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).
Thematic Areas: Zootecnia / recursos pesqueiros Waste management and disposal Saúde coletiva Química Pollution Odontología Nutrição Medicina veterinaria Medicina iii Medicina ii Medicina i Materiais Matemática / probabilidade e estatística Interdisciplinar Historia Geografía Geociências Farmacia Environmental sciences Environmental engineering Environmental chemistry Ensino Engenharias iii Engenharias ii Engenharias i Enfermagem Direito Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Biotecnología Biodiversidade Astronomia / física
licence for use: https://creativecommons.org/licenses/by/3.0/es/
ISSN: 00489697
Author's mail: sandra.contreras@urv.cat
Author identifier: 0000-0001-8917-4733
Record's date: 2024-10-12
Papper version: info:eu-repo/semantics/publishedVersion
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Science Of The Total Environment. 666 12-21
APA: Jimenez, Silvia; Andreozzi, Mario; Mico, Maria M; Alvarez, Mayra G; Contreras, Sandra (2019). Produced water treatment by advanced oxidation processes. Science Of The Total Environment, 666(), 12-21. DOI: 10.1016/j.scitotenv.2019.02.128
Entity: Universitat Rovira i Virgili
Journal publication year: 2019
Publication Type: Journal Publications