Articles producció científica> Enginyeria Química

CliqueMS: A computational tool for annotating in-source metabolite ions from LC-MS untargeted metabolomics data based on a coelution similarity network

  • Identification data

    Identifier: imarina:5873674
  • Authors:

    Senan O, Aguilar-Mogas A, Navarro M, Capellades J, Noon L, Burks D, Yanes O, Guimerà R, Sales-Pardo M
  • Others:

    Author, as appears in the article.: Senan O, Aguilar-Mogas A, Navarro M, Capellades J, Noon L, Burks D, Yanes O, Guimerà R, Sales-Pardo M
    Department: Enginyeria Electrònica, Elèctrica i Automàtica Enginyeria Química
    URV's Author/s: Guimera Manrique, Roger / Sales Pardo, Marta / Yanes Torrado, Óscar
    Keywords: Spectra extraction R package Prediction Identification
    Abstract: The analysis of biological samples in untargeted metabolomic studies using LC-MS yields tens of thousands of ion signals. Annotating these features is of the utmost importance for answering questions as fundamental as, for example, how many metabolites are there in a given sample.Here, we introduce CliqueMS, a new algorithm for annotating in-source LC-MS1 data. CliqueMS is based on the similarity between coelution profiles and therefore, as opposed to most methods, allows for the annotation of a single spectrum. Furthermore, CliqueMS improves upon the state of the art in several dimensions: (i) it uses a more discriminatory feature similarity metric; (ii) it treats the similarities between features in a transparent way by means of a simple generative model; (iii) it uses a well-grounded maximum likelihood inference approach to group features; (iv) it uses empirical adduct frequencies to identify the parental mass; and (v) it deals more flexibly with the identification of the parental mass by proposing and ranking alternative annotations. We validate our approach with simple mixtures of standards and with real complex biological samples. CliqueMS reduces the thousands of features typically obtained in complex samples to hundreds of metabolites, and it is able to correctly annotate more metabolites and adducts from a single spectrum than available tools.https://CRAN.R-project.org/package=cliqueMS and https://github.com/osenan/cliqueMS.Supplementary data, figures and text are available at Bioinformatics online.© The Author(s) 2019. Published by Oxford University Press.
    Thematic Areas: Statistics and probability Statistics & probability Odontología Nutrição Molecular biology Medicina veterinaria Medicina ii Medicina i Mathematics, interdisciplinary applications Mathematical & computational biology Matemática / probabilidade e estatística Interdisciplinar General medicine Engenharias iv Economia Computer science, interdisciplinary applications Computer science applications Computational theory and mathematics Computational mathematics Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências agrárias i Ciência da computação Biotecnología Biotechnology & applied microbiology Biology, miscellaneous Biodiversidade Biochemistry Biochemical research methods Astronomia / física
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 13674803
    Author's mail: roger.guimera@urv.cat oscar.yanes@urv.cat marta.sales@urv.cat
    Author identifier: 0000-0002-3597-4310 0000-0003-3695-7157 0000-0002-8140-6525
    Record's date: 2023-02-18
    Papper version: info:eu-repo/semantics/publishedVersion
    Link to the original source: https://academic.oup.com/bioinformatics/article/35/20/4089/5418951
    Papper original source: Bioinformatics. 35 (20): 4089-4097
    APA: Senan O, Aguilar-Mogas A, Navarro M, Capellades J, Noon L, Burks D, Yanes O, Guimerà R, Sales-Pardo M (2019). CliqueMS: A computational tool for annotating in-source metabolite ions from LC-MS untargeted metabolomics data based on a coelution similarity network. Bioinformatics, 35(20), 4089-4097. DOI: 10.1093/bioinformatics/btz207
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Article's DOI: 10.1093/bioinformatics/btz207
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2019
    Publication Type: Journal Publications
  • Keywords:

    Biochemical Research Methods,Biochemistry,Biology, Miscellaneous,Biotechnology & Applied Microbiology,Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Computer Science, Interdisciplinary Applications,Mathematical & Computational Biology,Mathematics, Interdisciplinary Applications,Molecular Biolog
    Spectra extraction
    R package
    Prediction
    Identification
    Statistics and probability
    Statistics & probability
    Odontología
    Nutrição
    Molecular biology
    Medicina veterinaria
    Medicina ii
    Medicina i
    Mathematics, interdisciplinary applications
    Mathematical & computational biology
    Matemática / probabilidade e estatística
    Interdisciplinar
    General medicine
    Engenharias iv
    Economia
    Computer science, interdisciplinary applications
    Computer science applications
    Computational theory and mathematics
    Computational mathematics
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências agrárias i
    Ciência da computação
    Biotecnología
    Biotechnology & applied microbiology
    Biology, miscellaneous
    Biodiversidade
    Biochemistry
    Biochemical research methods
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar