Author, as appears in the article.: Singh, Vivek Kumar; Abdel-Nasser, Mohamed; Rashwan, Hatem A; Akram, Farhan; Pandey, Nidhi; Lalande, Alain; Presles, Benoit; Romani, Santiago; Puig, Domenec
Department: Enginyeria Informàtica i Matemàtiques
URV's Author/s: Abdellatif Fatahallah Ibrahim Mahmoud, Hatem / Abdelnasser Mohamed Mahmoud, Mohamed / AKRAM, FARHAN / Pandey, Nidhi / Puig Valls, Domènec Savi / Romaní Also, Santiago
Keywords: Skin lesion Residual convolution Gradient vector flow Factorized kernel Dermoscopy images Conditional generative adversarial network Channel attention
Abstract: Skin lesion segmentation in dermoscopic images is still a challenge due to the low contrast and fuzzy boundaries of lesions. Moreover, lesions have high similarity with the healthy regions in terms of appearance. In this paper, we propose an accurate skin lesion segmentation model based on a modified conditional generative adversarial network (cGAN). We introduce a new block in the encoder of cGAN called factorized channel attention (FCA), which exploits both channel attention mechanism and residual 1-D kernel factorized convolution. The channel attention mechanism increases the discriminability between the lesion and non-lesion features by taking feature channel interdependencies into account. The 1-D factorized kernel block provides extra convolutions layers with a minimum number of parameters to reduce the computations of the higher-order convolutions. Besides, we use a multi-scale input strategy to encourage the development of filters which are scale-variant (i.e., constructing a scale-invariant representation). The proposed model is assessed on three skin challenge datasets: ISBI2016, ISBI2017, and ISIC2018. It yields competitive results when compared to several state-of-the-art methods in terms of Dice coefficient and intersection over union (IoU) score. The codes of the proposed model are publicly available at https://github.com/vivek231/Skin-Project.
Thematic Areas: Telecommunications Materials science (miscellaneous) Materials science (all) General materials science General engineering General computer science Engineering, electrical & electronic Engineering (miscellaneous) Engineering (all) Engenharias iv Engenharias iii Electrical and electronic engineering Computer science, information systems Computer science (miscellaneous) Computer science (all) Ciência da computação
licence for use: https://creativecommons.org/licenses/by/3.0/es/
ISSN: 21693536
Author's mail: mohamed.abdelnasser@urv.cat hatem.abdellatif@urv.cat santiago.romani@urv.cat domenec.puig@urv.cat
Author identifier: 0000-0002-1074-2441 0000-0001-5421-1637 0000-0001-6673-9615 0000-0002-0562-4205
Record's date: 2024-09-21
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://ieeexplore.ieee.org/document/8832175
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Ieee Access. 7 130552-130565
APA: Singh, Vivek Kumar; Abdel-Nasser, Mohamed; Rashwan, Hatem A; Akram, Farhan; Pandey, Nidhi; Lalande, Alain; Presles, Benoit; Romani, Santiago; Puig, Do (2019). FCA-Net: Adversarial Learning for Skin Lesion Segment Lion Based on Multi-Scale Features and Factorized Channel Attention. Ieee Access, 7(), 130552-130565. DOI: 10.1109/ACCESS.2019.2940418
Article's DOI: 10.1109/ACCESS.2019.2940418
Entity: Universitat Rovira i Virgili
Journal publication year: 2019
Publication Type: Journal Publications