Author, as appears in the article.: Torres-Fuentes, C; Golubeva, AV; Zhdanov, AV; Wallace, S; Arboleya, S; Papkovsky, DB; El Aidy, S; Ross, P; Roy, BL; Stanton, C; Dinan, TG; Cryan, JF; Schellekens, H
Department: Bioquímica i Biotecnologia
URV's Author/s: Torres Fuentes, Cristina
Keywords: Scfa Probiotics Motility Mechanisms Lactate Increase Hormone secretagogue receptor High constitutive activity Gut-brain axis Gut bacteria Ghsr-1a Expression Diet Cells Acute lung injury scfa lactate gut bacteria ghsr-1a
Abstract: The gastrointestinal microbiota is emerging as a unique and inexhaustible source for metabolites with potential to modulate G-protein coupled receptors (GPCRs). The ghrelin receptor [growth hormone secretagogue receptor (GHSR)-1a] is a GPCR expressed throughout both the gut and the brain and plays a crucial role in maintaining energy balance, metabolism, and the central modulation of food intake, motivation, reward, and mood. To date, few studies have investigated the potential of the gastrointestinal microbiota and its metabolites to modulate GPCR signaling. Here we investigate the ability of short-chain fatty acids (SCFAs), lactate, and different bacterial strains, including Bifidobacterium and Lactobacillus genera, to modulate GHSR-1a signaling. We identify, for what is to our knowledge the first time, a potent effect of microbiota-derived metabolites on GHSR-1a signaling with potential significant consequences for host metabolism and physiology. We show that SCFAs, lactate, and bacterial supernatants are able to attenuate ghrelin-mediated signaling through the GHSR-1a. We suggest a novel route of communication between the gut microbiota and the host via modulation of GHSR-1a receptor signaling. Together, this highlights the emerging therapeutic potential in the exploration of the microbiota metabolome in the specific targeting of key GPCRs, with pleiotropic actions that span both the CNS and periphery.
Thematic Areas: Saúde coletiva Química Psicología Odontología Nutrição Molecular biology Medicine (miscellaneous) Medicina veterinaria Medicina iii Medicina ii Medicina i Interdisciplinar Genetics General medicine Farmacia Engenharias iv Engenharias ii Educação física Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Cell biology Biotecnología Biotechnology Biology Biodiversidade Biochemistry & molecular biology Biochemistry Astronomia / física
licence for use: https://creativecommons.org/licenses/by/3.0/es/
ISSN: 08926638
Author's mail: cristina.torres@urv.cat
Author identifier: 0000-0002-2917-6910
Record's date: 2024-02-11
Papper version: info:eu-repo/semantics/submittedVersion
Link to the original source: https://faseb.onlinelibrary.wiley.com/doi/epdf/10.1096/fj.201901433Rhttps://faseb.onlinelibrary.wiley.com/doi/epdf/10.1096/fj.201901433R
Papper original source: Faseb Journal. 33 (12): 13546-13559
APA: Torres-Fuentes, C; Golubeva, AV; Zhdanov, AV; Wallace, S; Arboleya, S; Papkovsky, DB; El Aidy, S; Ross, P; Roy, BL; Stanton, C; Dinan, TG; Cryan, JF; (2019). Short-chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling. Faseb Journal, 33(12), 13546-13559. DOI: 10.1096/fj.201901433R
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Article's DOI: 10.1096/fj.201901433R
Entity: Universitat Rovira i Virgili
Journal publication year: 2019
Publication Type: Journal Publications