Articles producció científica> Enginyeria Electrònica, Elèctrica i Automàtica

Thermal Resistance Characterization for Multifinger SOI-MOSFETs

  • Identification data

    Identifier: imarina:6178105
    Authors:
    Gonzalez, BenitoRodriguez, RaulLazaro, Antonio
    Abstract:
    Thermal conductance in multifinger silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFETs) is usually modeled at room temperature with a linear dependence on the total gate width, which is valid only when thermal coupling saturates. This paper presents a physically based model for calculating the thermal resistance of SOI-MOSFETs that accounts for progressive thermal coupling as the number of fingers increases and the substrate temperature. The model, extracted from a variety of gate geometries using the ac conductance method, correctly predicts the temperature rise in the device channel up to a substrate temperature of 150 degrees C. Finally, this simple thermal resistance model, which is applicable to nanometer-scale transistors, can easily be added to circuit simulators.
  • Others:

    Author, as appears in the article.: Gonzalez, Benito; Rodriguez, Raul; Lazaro, Antonio;
    Department: Enginyeria Electrònica, Elèctrica i Automàtica
    URV's Author/s: Lázaro Guillén, Antonio Ramon
    Keywords: Thermal resistance Substrate temperature Silicon-on-insulator (soi) metal-oxide-semiconductor field-effect transistor (mosfet) Multifinger model Model Methodology Heat-transport Finfets Electrothermal characterization Devices
    Abstract: Thermal conductance in multifinger silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFETs) is usually modeled at room temperature with a linear dependence on the total gate width, which is valid only when thermal coupling saturates. This paper presents a physically based model for calculating the thermal resistance of SOI-MOSFETs that accounts for progressive thermal coupling as the number of fingers increases and the substrate temperature. The model, extracted from a variety of gate geometries using the ac conductance method, correctly predicts the temperature rise in the device channel up to a substrate temperature of 150 degrees C. Finally, this simple thermal resistance model, which is applicable to nanometer-scale transistors, can easily be added to circuit simulators.
    Thematic Areas: Physics, applied Materiais Interdisciplinar Engineering, electrical & electronic Engenharias iv Engenharias ii Electronic, optical and magnetic materials Electrical and electronic engineering Ciência da computação Astronomia / física
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 00189383
    Author's mail: antonioramon.lazaro@urv.cat
    Author identifier: 0000-0003-3160-5777
    Record's date: 2024-09-07
    Papper version: info:eu-repo/semantics/acceptedVersion
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Ieee Transactions On Electron Devices. 65 (9): 3626-3632
    APA: Gonzalez, Benito; Rodriguez, Raul; Lazaro, Antonio; (2018). Thermal Resistance Characterization for Multifinger SOI-MOSFETs. Ieee Transactions On Electron Devices, 65(9), 3626-3632. DOI: 10.1109/TED.2018.2853799
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2018
    Publication Type: Journal Publications
  • Keywords:

    Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials,Engineering, Electrical & Electronic,Physics, Applied
    Thermal resistance
    Substrate temperature
    Silicon-on-insulator (soi) metal-oxide-semiconductor field-effect transistor (mosfet)
    Multifinger model
    Model
    Methodology
    Heat-transport
    Finfets
    Electrothermal characterization
    Devices
    Physics, applied
    Materiais
    Interdisciplinar
    Engineering, electrical & electronic
    Engenharias iv
    Engenharias ii
    Electronic, optical and magnetic materials
    Electrical and electronic engineering
    Ciência da computação
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar