Articles producció científica> Medicina i Cirurgia

Effects of macro- versus nanoporous silicon substrates on human aortic endothelial cell behavior

  • Identification data

    Identifier: imarina:6388009
    Authors:
    Formentin, PilarAlba, MariaCatalan, UrsulaFernandez-Castillejo, SaraPallares, JosepSola, RosaMarsal, Lluis F
    Abstract:
    © 2014, Formentín et al.; licensee Springer. Human aortic endothelial cells play a key role in the pathogenesis of atherosclerosis, which is a common, progressive, and multifactorial disease that is the clinical endpoint of an inflammatory process and endothelial dysfunction. Study and development of new therapies against cardiovascular disease must be tested in vitro cell models, prior to be evaluated in vivo. To this aim, new cell culture platforms are developed that allow cells to grow and respond to their environment in a realistic manner. In this work, the cell adhesion and morphology of endothelial cells are investigated on functionalized porous silicon substrates with two different pore size configurations: macroporous and nanoporous silicon. Herein, we modified the surfaces of porous silicon substrates by aminopropyl triethoxysilane, and we studied how different pore geometries induced different cellular response in the cell morphology and adhesion. The cell growth over the surface of porous silicon becomes an attractive field, especially for medical applications. Surface properties of the biomaterial are associated with cell adhesion and as well as, with proliferation, migration and differentiation.
  • Others:

    Author, as appears in the article.: Formentin, Pilar; Alba, Maria; Catalan, Ursula; Fernandez-Castillejo, Sara; Pallares, Josep; Sola, Rosa; Marsal, Lluis F
    Department: Enginyeria Electrònica, Elèctrica i Automàtica Medicina i Cirurgia
    URV's Author/s: ALBA MARTÍN, MARÍA / Catalán Santos, Úrsula / FERNÁNDEZ CASTILLEJO, SARA / Formentín Vallés, Pilar / Marsal Garví, Luis Francisco / Pallarés Curto, Jorge María / Pallarès Marzal, Josep / Solà Alberich, Rosa Maria
    Keywords: Porous silicon Haec Cell morphology Cell adhesion
    Abstract: © 2014, Formentín et al.; licensee Springer. Human aortic endothelial cells play a key role in the pathogenesis of atherosclerosis, which is a common, progressive, and multifactorial disease that is the clinical endpoint of an inflammatory process and endothelial dysfunction. Study and development of new therapies against cardiovascular disease must be tested in vitro cell models, prior to be evaluated in vivo. To this aim, new cell culture platforms are developed that allow cells to grow and respond to their environment in a realistic manner. In this work, the cell adhesion and morphology of endothelial cells are investigated on functionalized porous silicon substrates with two different pore size configurations: macroporous and nanoporous silicon. Herein, we modified the surfaces of porous silicon substrates by aminopropyl triethoxysilane, and we studied how different pore geometries induced different cellular response in the cell morphology and adhesion. The cell growth over the surface of porous silicon becomes an attractive field, especially for medical applications. Surface properties of the biomaterial are associated with cell adhesion and as well as, with proliferation, migration and differentiation.
    Thematic Areas: Química Physics, applied Nutrição Nanoscience and nanotechnology Nanoscience & nanotechnology Medicina ii Medicina i Materials science, multidisciplinary Materials science (miscellaneous) Materials science (all) Materiais Interdisciplinar General materials science Farmacia Ensino Engenharias iv Engenharias iii Engenharias ii Condensed matter physics Ciências biológicas ii Biotecnología Astronomia / física Administração pública e de empresas, ciências contábeis e turismo
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 19317573
    Author's mail: ursula.catalan@urv.cat josep.pallares@urv.cat rosa.sola@urv.cat lluis.marsal@urv.cat jordi.pallares@urv.cat pilar.formentin@urv.cat pilar.formentin@urv.cat
    Author identifier: 0000-0001-8884-9823 0000-0001-7221-5383 0000-0002-8359-235X 0000-0002-5976-1408 0000-0003-0305-2714
    Record's date: 2024-10-12
    Papper version: info:eu-repo/semantics/publishedVersion
    Link to the original source: https://nanoscalereslett.springeropen.com/articles/10.1186/1556-276X-9-421
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Nanoscale Research Letters. 9 (1): 421-
    APA: Formentin, Pilar; Alba, Maria; Catalan, Ursula; Fernandez-Castillejo, Sara; Pallares, Josep; Sola, Rosa; Marsal, Lluis F (2014). Effects of macro- versus nanoporous silicon substrates on human aortic endothelial cell behavior. Nanoscale Research Letters, 9(1), 421-. DOI: 10.1186/1556-276X-9-421
    Article's DOI: 10.1186/1556-276X-9-421
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2014
    Publication Type: Journal Publications
  • Keywords:

    Condensed Matter Physics,Materials Science (Miscellaneous),Materials Science, Multidisciplinary,Nanoscience & Nanotechnology,Nanoscience and Nanotechnology,Physics, Applied
    Porous silicon
    Haec
    Cell morphology
    Cell adhesion
    Química
    Physics, applied
    Nutrição
    Nanoscience and nanotechnology
    Nanoscience & nanotechnology
    Medicina ii
    Medicina i
    Materials science, multidisciplinary
    Materials science (miscellaneous)
    Materials science (all)
    Materiais
    Interdisciplinar
    General materials science
    Farmacia
    Ensino
    Engenharias iv
    Engenharias iii
    Engenharias ii
    Condensed matter physics
    Ciências biológicas ii
    Biotecnología
    Astronomia / física
    Administração pública e de empresas, ciências contábeis e turismo
  • Documents:

  • Cerca a google

    Search to google scholar