Author, as appears in the article.: Tomas, Josep; Garcia, Neus; Lanuza, Maria A; Santafe, Manel M; Tomas, Marta; Nadal, Laura; Hurtado, Erica; Simo, Anna; Cilleros, Victor
Department: Ciències Mèdiques Bàsiques
URV's Author/s: Cilleros Mañé, Víctor / Garcia Sancho, Maria de les Neus / Hurtado Caballero, Erica / Lanuza Escolano, María Angel / NADAL MAGRIÑÀ, LAURA / Santafé Martínez, Manuel / SIMÓ OLLÉ, ANNA / Tomás Ferré, José Maria / Tomas Marginet, Marta
Keywords: Voltage-dependent calcium channels Trkb Protein kinases Postnatal synapse elimination Pkc Muscarinic acetylcholine receptors Axonal competition Acetylcholine release trkb protein kinases postnatal synapse elimination pkc muscarinic acetylcholine receptors axonal competition acetylcholine release
Abstract: © 2017 Tomàs, Garcia, Lanuza, Santafé, Tomàs, Nadal, Hurtado, Simó and Cilleros. During the histogenesis of the nervous system a lush production of neurons, which establish an excessive number of synapses, is followed by a drop in both neurons and synaptic contacts as maturation proceeds. Hebbian competition between axons with different activities leads to the loss of roughly half of the neurons initially produced so connectivity is refined and specificity gained. The skeletal muscle fibers in the newborn neuromuscular junction (NMJ) are polyinnervated but by the end of the competition, 2 weeks later, the NMJ are innervated by only one axon. This peripheral synapse has long been used as a convenient model for synapse development. In the last few years, we have studied transmitter release and the local involvement of the presynaptic muscarinic acetylcholine autoreceptors (mAChR), adenosine autoreceptors (AR) and trophic factor receptors (TFR, for neurotrophins and trophic cytokines) during the development of NMJ and in the adult. This review article brings together previously published data and proposes a molecular background for developmental axonal competition and loss. At the end of the first week postnatal, these receptors modulate transmitter release in the various nerve terminals on polyinnervated NMJ and contribute to axonal competition and synapse elimination.
Thematic Areas: Neurosciences Molecular biology Medicina ii Ciências biológicas ii Cellular and molecular neuroscience
licence for use: https://creativecommons.org/licenses/by/3.0/es/
ISSN: 16625099
Author's mail: marta.tomas@urv.cat erica.hurtado@urv.cat victor.cilleros@alumni.urv.cat josepmaria.tomas@urv.cat mariaangel.lanuza@urv.cat manuel.santafe@urv.cat
Author identifier: 0000-0002-4151-1697 0000-0001-5690-9932 0000-0002-0406-0006 0000-0003-4795-4103 0000-0002-5462-5108
Record's date: 2024-10-12
Papper version: info:eu-repo/semantics/publishedVersion
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Frontiers In Molecular Neuroscience. 10 132-
APA: Tomas, Josep; Garcia, Neus; Lanuza, Maria A; Santafe, Manel M; Tomas, Marta; Nadal, Laura; Hurtado, Erica; Simo, Anna; Cilleros, Victor (2017). Presynaptic membrane receptors modulate ACh release, axonal competition and synapse elimination during neuromuscular junction development. Frontiers In Molecular Neuroscience, 10(), 132-. DOI: 10.3389/fnmol.2017.00132
Entity: Universitat Rovira i Virgili
Journal publication year: 2017
Publication Type: Journal Publications