Articles producció científica> Enginyeria Química

Multi-objective optimisation of bio-based thermal insulation materials in building envelopes considering condensation risk

  • Identification data

    Identifier: imarina:6389419
  • Authors:

    Torres-Rivas A
    Palumbo M
    Haddad A
    Cabeza LF
    Jiménez L
    Boer D
  • Others:

    Author, as appears in the article.: Torres-Rivas A; Palumbo M; Haddad A; Cabeza LF; Jiménez L; Boer D
    Department: Enginyeria Mecànica Enginyeria Química
    URV's Author/s: Boer, Dieter-Thomas / Jiménez Esteller, Laureano / TORRES RIVAS, ALBA
    Keywords: Thermal insulation Systems Storage Phase Performance analysis Multi-objective optimization Moisture transfer Life-cycle Life cycle assessment (lca) Environmental impacts Energy performance Design Cubicles Cost Condensation risk Bio-based building materials
    Abstract: © 2018 Elsevier Ltd The reduction in energy demand for heating and cooling with insulation materials increases the material related environmental impact. Thus, implementing low embodied energy materials may equilibrate this trade-off. Actual trends in passive house postulate bio-based materials as an alternative to conventional ones. Despite that, the implementation of those insulators should be carried out with a deeper analysis due to their hygroscopic properties. The moisture transfer, the associated condensation risk and the energy consumption for seven bio-based materials and polyurethane for a building-like cubicle are analysed. The performance is evaluated combining a software application to model the cubicle (EnergyPlus) and a tool to optimize its performance (jEPlus). The novelty of this optimization approach is to include and evaluate the effects of moisture in these insulation materials, taking into account the mass transfer through the different layers and the evaporation of the different materials. This methodology helps optimise the insulation type and thickness verifying the condensation risk, preventing the deterioration of the materials. The total cost of the different solutions is quantified, and the environmental impact is determined using the life cycle assessment methodology. The effect of climate conditions and the envelope configuration, as well as the risk of condensation, are quantified. The results show that cost and environmental impact can be reduced if bio-based materials are used instead of conventional ones, especially in semiarid climates. Condensation risk occurs for large thicknesses and in humid climates. In our case studies, hemp offered the most balanced solution.
    Thematic Areas: Renewable energy, sustainability and the environment Química Nuclear energy and engineering Mechanical engineering Materiais Matemática / probabilidade e estatística Management, monitoring, policy and law Interdisciplinar Geociências General energy Fuel technology Farmacia Engineering, chemical Engenharias iv Engenharias iii Engenharias ii Engenharias i Energy engineering and power technology Energy (miscellaneous) Energy (all) Energy & fuels Economia Civil and structural engineering Ciências biológicas iii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Building and construction Biotecnología Biodiversidade Arquitetura, urbanismo e design
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 03062619
    Author's mail: dieter.boer@urv.cat laureano.jimenez@urv.cat
    Author identifier: 0000-0002-5532-6409 0000-0002-3186-7235
    Record's date: 2024-09-07
    Papper version: info:eu-repo/semantics/acceptedVersion
    Link to the original source: https://www.sciencedirect.com/science/article/abs/pii/S0306261918306378
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Applied Energy. 224 602-614
    APA: Torres-Rivas A; Palumbo M; Haddad A; Cabeza LF; Jiménez L; Boer D (2018). Multi-objective optimisation of bio-based thermal insulation materials in building envelopes considering condensation risk. Applied Energy, 224(), 602-614. DOI: 10.1016/j.apenergy.2018.04.079
    Article's DOI: 10.1016/j.apenergy.2018.04.079
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2018
    Publication Type: Journal Publications
  • Keywords:

    Building and Construction,Civil and Structural Engineering,Energy & Fuels,Energy (Miscellaneous),Energy Engineering and Power Technology,Engineering, Chemical,Fuel Technology,Management, Monitoring, Policy and Law,Mechanical Engineering,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment
    Thermal insulation
    Systems
    Storage
    Phase
    Performance analysis
    Multi-objective optimization
    Moisture transfer
    Life-cycle
    Life cycle assessment (lca)
    Environmental impacts
    Energy performance
    Design
    Cubicles
    Cost
    Condensation risk
    Bio-based building materials
    Renewable energy, sustainability and the environment
    Química
    Nuclear energy and engineering
    Mechanical engineering
    Materiais
    Matemática / probabilidade e estatística
    Management, monitoring, policy and law
    Interdisciplinar
    Geociências
    General energy
    Fuel technology
    Farmacia
    Engineering, chemical
    Engenharias iv
    Engenharias iii
    Engenharias ii
    Engenharias i
    Energy engineering and power technology
    Energy (miscellaneous)
    Energy (all)
    Energy & fuels
    Economia
    Civil and structural engineering
    Ciências biológicas iii
    Ciências biológicas i
    Ciências ambientais
    Ciências agrárias i
    Ciência de alimentos
    Ciência da computação
    Building and construction
    Biotecnología
    Biodiversidade
    Arquitetura, urbanismo e design
  • Documents:

  • Cerca a google

    Search to google scholar