Articles producció científica> Enginyeria Mecànica

Influence of silver nanoparticles morphologies on density, viscosity and thermal conductivity of silver nanofluids and silver ionanofluids

  • Identification data

    Identifier: imarina:6389431
    Authors:
    Patil VCera-Manjarres ASalavera DRode CPatil KCoronas A
    Abstract:
    © 2018 by American Scientific Publishers All rights reserved. This paper explores the consequence of silver nanoparticles morphology (nanowires, nanoplates, and nanospheres) on density, viscosity and thermal conductivity of nanofluids and IoNanoFluids. Nuclear magnetic resonance spectroscopy results reveal that hydroxyl group in cation relates to silver nanoparticle surface of silver IoNanoFluid. Effect on bonding of silver nanoparticles after solvation in an ionic liquid was investigated with Infrared spectroscopy. UV-Visible spectroscopy analysis observed variations in color and optical properties of silver IoNanoFluids compared with nanofluids. Structural and morphological characterization of silver nanofluids and silver IoNanoFluids were carried out with Scanning electron microscopy and Transmission electron microscopy techniques. The presence of silver nanoparticles from the aqueous phase of nanofluids to viscous ionic liquid phase was confirmed by X-ray photoelectron spectroscopy and Energy dispersive analysis. The thermal stability study unveils that Choline bis(trifluromethylsulfonyl)imide ionic liquid, and its derived silver IoNanoFluids, are more stable than silver nanofluids. There was no considerable impact was observed for the silver nanoparticles morphology on the density of IoNanofluids. Moreover, two-dimensional silver structures raise the viscosity further compare to other two morphologies of silver nanoparticles in a base ionic liquid. Among all three studied morphologies, silver nanowires influence additional in the enhancement of thermal conductivity for silver nanofluids and IoNanoFluids. Enhanced thermal conductivity and reduced viscosity of silver nanowires based IoNanoFluid sorts this fluid as a potential heat transfer fluid.
  • Others:

    Author, as appears in the article.: Patil V; Cera-Manjarres A; Salavera D; Rode C; Patil K; Coronas A
    Department: Enginyeria Mecànica
    URV's Author/s: CERA MANJARRES, ANDRY RAFAEL / Coronas Salcedo, Alberto / Salavera Muñoz, Daniel / Viteri Vera, María Del Pilar
    Keywords: Viscosity Thermal conductivity Silver nanoparticles Ionic liquids Ionanofluids Density Choline bis(trifluromethylsulfonyl)imide
    Abstract: © 2018 by American Scientific Publishers All rights reserved. This paper explores the consequence of silver nanoparticles morphology (nanowires, nanoplates, and nanospheres) on density, viscosity and thermal conductivity of nanofluids and IoNanoFluids. Nuclear magnetic resonance spectroscopy results reveal that hydroxyl group in cation relates to silver nanoparticle surface of silver IoNanoFluid. Effect on bonding of silver nanoparticles after solvation in an ionic liquid was investigated with Infrared spectroscopy. UV-Visible spectroscopy analysis observed variations in color and optical properties of silver IoNanoFluids compared with nanofluids. Structural and morphological characterization of silver nanofluids and silver IoNanoFluids were carried out with Scanning electron microscopy and Transmission electron microscopy techniques. The presence of silver nanoparticles from the aqueous phase of nanofluids to viscous ionic liquid phase was confirmed by X-ray photoelectron spectroscopy and Energy dispersive analysis. The thermal stability study unveils that Choline bis(trifluromethylsulfonyl)imide ionic liquid, and its derived silver IoNanoFluids, are more stable than silver nanofluids. There was no considerable impact was observed for the silver nanoparticles morphology on the density of IoNanofluids. Moreover, two-dimensional silver structures raise the viscosity further compare to other two morphologies of silver nanoparticles in a base ionic liquid. Among all three studied morphologies, silver nanowires influence additional in the enhancement of thermal conductivity for silver nanofluids and IoNanoFluids. Enhanced thermal conductivity and reduced viscosity of silver nanowires based IoNanoFluid sorts this fluid as a potential heat transfer fluid.
    Thematic Areas: Química Nanoscience & nanotechnology Mechanical engineering Interdisciplinar Fluid flow and transfer processes Engenharias iv Biotecnología Astronomia / física
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 2169432X
    Author's mail: alberto.coronas@urv.cat 0 daniel.salavera@urv.cat
    Author identifier: 0000-0002-6109-3680 0000-0003-0061-0581
    Record's date: 2024-09-14
    Papper version: info:eu-repo/semantics/publishedVersion
    Link to the original source: https://www.ingentaconnect.com/contentone/asp/jon/2018/00000007/00000002/art00003#
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Journal Of Nanofluids. 7 (2): 246-257
    APA: Patil V; Cera-Manjarres A; Salavera D; Rode C; Patil K; Coronas A (2018). Influence of silver nanoparticles morphologies on density, viscosity and thermal conductivity of silver nanofluids and silver ionanofluids. Journal Of Nanofluids, 7(2), 246-257. DOI: 10.1166/jon.2018.1451
    Article's DOI: 10.1166/jon.2018.1451
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2018
    Publication Type: Journal Publications
  • Keywords:

    Fluid Flow and Transfer Processes,Mechanical Engineering,Nanoscience & Nanotechnology
    Viscosity
    Thermal conductivity
    Silver nanoparticles
    Ionic liquids
    Ionanofluids
    Density
    Choline bis(trifluromethylsulfonyl)imide
    Química
    Nanoscience & nanotechnology
    Mechanical engineering
    Interdisciplinar
    Fluid flow and transfer processes
    Engenharias iv
    Biotecnología
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar