Articles producció científica> Química Analítica i Química Orgànica

Modulating the mixed potential for developing biosensors: Direct potentiometric determination of glucose in whole, undiluted blood

  • Identification data

    Identifier: imarina:6390143
    Authors:
    Cánovas RBlondeau PAndrade FJ
    Abstract:
    © 2020 Elsevier B.V. The growing demand for tools to generate chemical information in decentralized settings is creating a vast range of opportunities for potentiometric sensors, since their combination of robustness, simplicity of operation and cost can hardly be rivalled by any other technique. In previous works, we have shown that the mixed potential of a Pt electrode can be controlled with analytical purposes using a coating of Nafion, thus providing a way to develop a potentiometric biosensor for glucose. Unfortunately, the linear range of this device did not match the relevant clinical range for glucose in blood. This work presents a novel strategy to control the mixed potential that allows the development of a potentiometric biosensor for the direct detection of glucose in whole, undiluted blood without any sample pretreatment. By changing the ionomer, the analytical response can be tuned, shifting the linear range while keeping the sensitivity. Aquivion, a polyelectrolyte from the same family as Nafion, is used to stabilize the mixed potential of a platinized paper-based electrode, to entrap the enzyme and to reduce the interference from negatively charged species. Factors affecting the generation of the signal and the principle of detection are discussed. Optimization of the biosensor composition was achieved with particular focus on the characterization of the linear range and sensitivity. The accurate measurement of blood sugar levels in a single drop of whole blood with excellent recovery is presented.
  • Others:

    Author, as appears in the article.: Cánovas R; Blondeau P; Andrade FJ
    Department: Química Analítica i Química Orgànica
    URV's Author/s: Blondeau, Pascal Jean Claude Leon
    Project code: CTQ2016-77128-R
    Keywords: Whole blood detection Potentiometry Paper-based sensor Monitoring glucose Mixed potential Glucose Electrode Electrochemical biosensors potentiometry paper-based sensor mixed potential glucose
    Abstract: © 2020 Elsevier B.V. The growing demand for tools to generate chemical information in decentralized settings is creating a vast range of opportunities for potentiometric sensors, since their combination of robustness, simplicity of operation and cost can hardly be rivalled by any other technique. In previous works, we have shown that the mixed potential of a Pt electrode can be controlled with analytical purposes using a coating of Nafion, thus providing a way to develop a potentiometric biosensor for glucose. Unfortunately, the linear range of this device did not match the relevant clinical range for glucose in blood. This work presents a novel strategy to control the mixed potential that allows the development of a potentiometric biosensor for the direct detection of glucose in whole, undiluted blood without any sample pretreatment. By changing the ionomer, the analytical response can be tuned, shifting the linear range while keeping the sensitivity. Aquivion, a polyelectrolyte from the same family as Nafion, is used to stabilize the mixed potential of a platinized paper-based electrode, to entrap the enzyme and to reduce the interference from negatively charged species. Factors affecting the generation of the signal and the principle of detection are discussed. Optimization of the biosensor composition was achieved with particular focus on the characterization of the linear range and sensitivity. The accurate measurement of blood sugar levels in a single drop of whole blood with excellent recovery is presented.
    Thematic Areas: Química Nanoscience and nanotechnology Nanoscience & nanotechnology Medicine (miscellaneous) Medicina ii Medicina i Materiais Interdisciplinar Farmacia Engenharias iv Engenharias iii Engenharias ii Electrochemistry Economia Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Chemistry, analytical Biotecnología Biotechnology & applied microbiology Biotechnology Biophysics Biomedical engineering Biodiversidade Astronomia / física
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 0956-5663
    Author's mail: pascal.blondeau@urv.cat
    Author identifier: 0000-0003-1331-5055
    Record's date: 2023-02-19
    Journal volume: 163
    Papper version: info:eu-repo/semantics/acceptedVersion
    Funding program: Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad (Agencia Estatal de Investigación - Ministerio de Economía, Industria y Competitividad)
    Papper original source: Biosensors & Bioelectronics. 163 (112302): 112302-
    APA: Cánovas R; Blondeau P; Andrade FJ (2020). Modulating the mixed potential for developing biosensors: Direct potentiometric determination of glucose in whole, undiluted blood. Biosensors & Bioelectronics, 163(112302), 112302-. DOI: 10.1016/j.bios.2020.112302
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Acronym: HOMESENS
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2020
    Funding program action: Proyecto de I+D
    Publication Type: Journal Publications
  • Keywords:

    Biomedical Engineering,Biophysics,Biotechnology,Biotechnology & Applied Microbiology,Chemistry, Analytical,Electrochemistry,Medicine (Miscellaneous),Nanoscience & Nanotechnology,Nanoscience and Nanotechnology
    Whole blood detection
    Potentiometry
    Paper-based sensor
    Monitoring glucose
    Mixed potential
    Glucose
    Electrode
    Electrochemical biosensors
    potentiometry
    paper-based sensor
    mixed potential
    glucose
    Química
    Nanoscience and nanotechnology
    Nanoscience & nanotechnology
    Medicine (miscellaneous)
    Medicina ii
    Medicina i
    Materiais
    Interdisciplinar
    Farmacia
    Engenharias iv
    Engenharias iii
    Engenharias ii
    Electrochemistry
    Economia
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências ambientais
    Ciências agrárias i
    Chemistry, analytical
    Biotecnología
    Biotechnology & applied microbiology
    Biotechnology
    Biophysics
    Biomedical engineering
    Biodiversidade
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar