Author, as appears in the article.: Martínez AC; Rodríguez-Velázquez JA
Department: Enginyeria Informàtica i Matemàtiques
URV's Author/s: CABRERA MARTÍNEZ, ABEL / Rodríguez Velázquez, Juan Alberto
Keywords: Total weak roman domination Total domination Secure total domination Lexicographic product Italian domination total domination secure total domination roman lexicographic product
Abstract: © (V1 â V2) such that the function f′, defined by f′(v) = 1, f′(u) = f(u)-1 and f′(x) = f(x) whenever x â V (G) \ {u, v}, is a total dominating function as well. If f is a total weak Roman dominating function and V2 = â, then we say that f is a secure total dominating function. The weight of a function f is defined to be ω(f) = ςvâV(G) f(v). The total weak Roman domination number (secure total domination number) of a graph G is the minimum weight among all total weak Roman dominating functions (secure total dominating functions) on G. In this article, we show that these two parameters coincide for lexicographic product graphs. Furthermore, we obtain closed formulae and tight bounds for these parameters in terms of invariants of the factor graphs involved in the product. Given a graph G with vertex set V (G), a function f: V (G) → {0, 1, 2} is said to be a total dominating function if ςuâN(v) f(u) > 0 for every v â V (G), where N(v) denotes the open neighbourhood of v. Let Vi = {x â V (G): F(x) = i}. A total dominating function f is a total weak Roman dominating function if for every vertex v â V0 there exists a vertex u â N(v) â.
Thematic Areas: Mathematics Matemática / probabilidade e estatística Discrete mathematics and combinatorics Ciência da computação Applied mathematics
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: juanalberto.rodriguez@urv.cat
Author identifier: 0000-0002-9082-7647
Record's date: 2024-09-07
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://www.dmgt.uz.zgora.pl/publish/bbl_view_press.php?ID=27108
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Discussiones Mathematicae Graph Theory. 42 (3): 967-984
APA: Martínez AC; Rodríguez-Velázquez JA (2022). Total Protection of Lexicographic Product Graphs. Discussiones Mathematicae Graph Theory, 42(3), 967-984. DOI: 10.7151/dmgt.2318
Article's DOI: 10.7151/dmgt.2318
Entity: Universitat Rovira i Virgili
Journal publication year: 2022
Publication Type: Journal Publications