Articles producció científica> Química Analítica i Química Orgànica

Microporous polymer microspheres with amphoteric character for the solid-phase extraction of acidic and basic analytes

  • Identification data

    Identifier: imarina:8504709
    Authors:
    Nadal, Joan CarlesAnderson, Kimberley LDargo, StuartJoas, IrvinSalas, DanielaBorrull, FrancescCormack, Peter A GMarce, Rosa MariaFontanals, Nuria
    Abstract:
    Solid-phase extraction (SPE) is a widely-used and very well-established sample preparation technique for liquid samples. An area of on-going focus for innovation in this field concerns the development of new and improved SPE sorbents that can enhance the sensitivity and/or the selectivity of SPE processes. In this context, mixed-mode ion-exchange sorbents have been developed and commercialised, thereby allowing enhanced capacity and selectivity to be offered by one single material. The ion-selectivity of these materials is such that either anion-exchange or cation-exchange is possible, however one limitation to their use is that more than one sorbent type is required to capture both anions and cations. In this paper, we disclose the design, synthesis and exploitation of a novel SPE sorbent based on microporous polymer microspheres with amphoteric character. We show that it is possible to switch the ion-exchange retention mechanism of the sorbent simply by changing the pH of the loading solution; anion-exchange dominates at low pH, cation-exchange dominates at high pH, and both mechanisms can contribute to retention when the polymer-bound amphoteric species, which are based on the alpha-amino acid sarcosine (N-methylglycine), are in a zwitterionic state. This is an interesting and useful feature, since it allows distinctly different groups of analytes (acids and bases) to be fractionated using one single amphoteric sorbent with dual-functionality. The sarcosine-based sorbent was applied to the SPE of acidic, basic and amphoteric analytes from ultrapure water, river water and effluent wastewater samples. Under optimised conditions (loading 100 mL of sample at pH 6, washing with 1 mL of MeOH and eluting with an acidic or basic additive in MeOH) the recoveries for most of t
  • Others:

    Author, as appears in the article.: Nadal, Joan Carles; Anderson, Kimberley L; Dargo, Stuart; Joas, Irvin; Salas, Daniela; Borrull, Francesc; Cormack, Peter A G; Marce, Rosa Maria; Fontanals, Nuria
    Department: Química Analítica i Química Orgànica
    URV's Author/s: Borrull Ballarín, Francesc / Fontanals Torroja, Núria / Marcé Recasens, Rosa Maria / SALAS ACOSTA, DANIELA
    Keywords: Waste-water Surface Sorbent Solid-phase extraction Silica Selective extraction Pharmaceuticals Nonsteroidal antiinflammatory drugs Monodisperse Mixed-mode ion-exchange Liquid-chromatography Exchange character Environmental water samples Basic analytes Amphoteric sorbent Acidic analytes
    Abstract: Solid-phase extraction (SPE) is a widely-used and very well-established sample preparation technique for liquid samples. An area of on-going focus for innovation in this field concerns the development of new and improved SPE sorbents that can enhance the sensitivity and/or the selectivity of SPE processes. In this context, mixed-mode ion-exchange sorbents have been developed and commercialised, thereby allowing enhanced capacity and selectivity to be offered by one single material. The ion-selectivity of these materials is such that either anion-exchange or cation-exchange is possible, however one limitation to their use is that more than one sorbent type is required to capture both anions and cations. In this paper, we disclose the design, synthesis and exploitation of a novel SPE sorbent based on microporous polymer microspheres with amphoteric character. We show that it is possible to switch the ion-exchange retention mechanism of the sorbent simply by changing the pH of the loading solution; anion-exchange dominates at low pH, cation-exchange dominates at high pH, and both mechanisms can contribute to retention when the polymer-bound amphoteric species, which are based on the alpha-amino acid sarcosine (N-methylglycine), are in a zwitterionic state. This is an interesting and useful feature, since it allows distinctly different groups of analytes (acids and bases) to be fractionated using one single amphoteric sorbent with dual-functionality. The sarcosine-based sorbent was applied to the SPE of acidic, basic and amphoteric analytes from ultrapure water, river water and effluent wastewater samples. Under optimised conditions (loading 100 mL of sample at pH 6, washing with 1 mL of MeOH and eluting with an acidic or basic additive in MeOH) the recoveries for most of the compounds were from 57% to 87% for river water and from 61% to 88% for effluent wastewater. We anticipate that these results will lay the basis for the development of a new family of multifunctional sorbents, where two or more separation mechanisms can be embedded within one single, bespoke material optimised for application to challenging chemical separations to give significant selectivity advantages over essentially all other state-of-the-art SPE sorbents. (c) 2020 Elsevier B.V. All rights reserved.
    Thematic Areas: Zootecnia / recursos pesqueiros Química Organic chemistry Nutrição Medicine (miscellaneous) Medicina veterinaria Medicina ii Medicina i Materiais Interdisciplinar Geociências General medicine Farmacia Engenharias ii Engenharias i Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências agrárias i Ciência de alimentos Chemistry, analytical Biotecnología Biodiversidade Biochemistry Biochemical research methods Analytical chemistry
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: nuria.fontanals@urv.cat nuria.fontanals@urv.cat rosamaria.marce@urv.cat francesc.borrull@urv.cat
    Author identifier: 0000-0002-7534-1964 0000-0002-7534-1964 0000-0002-5667-2899 0000-0003-2718-9336
    Record's date: 2024-10-12
    Papper version: info:eu-repo/semantics/acceptedVersion
    Link to the original source: https://www.sciencedirect.com/science/article/abs/pii/S0021967320306269?via%3Dihub
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Journal Of Chromatography a. 1626 (461348): 461348-
    APA: Nadal, Joan Carles; Anderson, Kimberley L; Dargo, Stuart; Joas, Irvin; Salas, Daniela; Borrull, Francesc; Cormack, Peter A G; Marce, Rosa Maria; Fonta (2020). Microporous polymer microspheres with amphoteric character for the solid-phase extraction of acidic and basic analytes. Journal Of Chromatography a, 1626(461348), 461348-. DOI: 10.1016/j.chroma.2020.461348
    Article's DOI: 10.1016/j.chroma.2020.461348
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2020
    Publication Type: Journal Publications
  • Keywords:

    Analytical Chemistry,Biochemical Research Methods,Biochemistry,Chemistry, Analytical,Medicine (Miscellaneous),Organic Chemistry
    Waste-water
    Surface
    Sorbent
    Solid-phase extraction
    Silica
    Selective extraction
    Pharmaceuticals
    Nonsteroidal antiinflammatory drugs
    Monodisperse
    Mixed-mode ion-exchange
    Liquid-chromatography
    Exchange character
    Environmental water samples
    Basic analytes
    Amphoteric sorbent
    Acidic analytes
    Zootecnia / recursos pesqueiros
    Química
    Organic chemistry
    Nutrição
    Medicine (miscellaneous)
    Medicina veterinaria
    Medicina ii
    Medicina i
    Materiais
    Interdisciplinar
    Geociências
    General medicine
    Farmacia
    Engenharias ii
    Engenharias i
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências agrárias i
    Ciência de alimentos
    Chemistry, analytical
    Biotecnología
    Biodiversidade
    Biochemistry
    Biochemical research methods
    Analytical chemistry
  • Documents:

  • Cerca a google

    Search to google scholar