Author, as appears in the article.: Claver, Carmen; Yeamin, Md Bin; Reguero, Mar; Masdeu-Bulto, Anna M
Department: Química Física i Inorgànica
e-ISSN: 1463-9270
URV's Author/s: Claver Cabrero, Maria del Carmen Orosia / Masdeu Bultó, Anna Maria / Reguero de la Poza, Maria del Mar / Yeamin, MD Bin
Project code: CTQ2016-75016-R
Keywords: Propylene carbonate Of-the-art Metal-organic frameworks Ionic liquids Highly efficient Heterogeneous catalyst Efficient synthesis Dioxide capture Deep eutectic solvents Chemical fixation
Abstract: The cycloaddition of carbon dioxide to epoxides is an efficient and clean method to obtain cyclic carbonates, which are used as green solvents, as electrolytes for lithium batteries and as intermediates for the synthesis of polymers and chemicals. This reaction requires a catalyst to overcome the low reactivity of carbon dioxide. The best catalysts for this transformation include a Lewis acid or hydrogen-bond donor to activate the epoxide and a Lewis base as a nucleophile to open the ring of the oxirane cycle. The most commonly used catalysts are alkali halides, ammonium and phosphonium salts, which are organocatalysts containing hydrogen-bond donor groups and metal-based systems. To increase the sustainability and decrease the toxicity of the catalytic systems, many bio-based products derived from natural sources have been used as catalysts or in combination with catalytic materials. The high functionality of natural products that contain amino and/or hydroxyl groups is used to activate an epoxide or reversibly capture carbon dioxide when used directly. But these products can also behave as auxiliaries, for instance, as ligands in metal-based complexes, as biopolymer active supports for catalysts, as components for the skeleton of metal organic frameworks or to form ionic liquids or as deep eutectic solvents serving as an active medium for catalytic reactions. In this literature review, we present a structured overview of the reported chemical catalytic systems containing any component derived from a natural product. We discuss the amino acid-based systems, cellulose, saccharides, lignin and lignocellulosic materials, choline-derived species, guanidine and guanidinium salts, and other less explored compounds. Special emphasis has been placed on mechanistic studies providing information about the role of each component in these multifunctional systems.
Thematic Areas: Química Pollution Medicina veterinaria Medicina ii Materiais Interdisciplinar Green & sustainable science & technology Farmacia Environmental chemistry Engenharias iv Engenharias iii Engenharias ii Ciências biológicas ii Ciências biológicas i Ciências agrárias i Ciência de alimentos Chemistry, multidisciplinary Chemistry Biotecnología Astronomia / física
licence for use: https://creativecommons.org/licenses/by/3.0/es/
ISSN: 1463-9262
Author's mail: annamaria.masdeu@urv.cat carmen.claver@urv.cat mar.reguero@urv.cat
Author identifier: 0000-0001-7938-3902 0000-0002-2518-7401 0000-0001-9668-8265
Record's date: 2024-10-12
Papper version: info:eu-repo/semantics/submittedVersion
Funding program: PROGRAMA ESTATAL DE INVESTIGACIÓN, DESARROLLO E INNOVACIÓN ORIENTADA A LOS RETOS DE LA SOCIEDAD
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Green Chemistry. 22 (22): 7665-7706
APA: Claver, Carmen; Yeamin, Md Bin; Reguero, Mar; Masdeu-Bulto, Anna M (2020). Recent advances in the use of catalysts based on natural products for the conversion of CO2 into cyclic carbonates. Green Chemistry, 22(22), 7665-7706. DOI: 10.1039/d0gc01870h
Acronym: ECO2VALCAT
Entity: Universitat Rovira i Virgili
Journal publication year: 2020
Funding program action: VALORIZACION EFICIENTE DE CO2 A COMBUSTIBLES Y COMPUESTOS DE ALTO VALOR AÑADIDO MEDIANTE CATALISIS HOMOGENEA Y NANO-CATALISIS
Publication Type: Journal Publications