Articles producció científica> Enginyeria Informàtica i Matemàtiques

A CONSTRUCTIVE CHARACTERIZATION OF VERTEX COVER ROMAN TREES

  • Identification data

    Identifier: imarina:9093098
    Authors:
    Cabrera Martinez, AbelKuziak, DorotaYero, Ismael G.
    Abstract:
    A Roman dominating function on a graph G = (V (G), E (G)) is a function f : V (G) -> {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The Roman dominating function f is an outer-independent Roman dominating function on G if the set of vertices labeled with zero under f is an independent set. The outer-independent Roman domination number gamma(oiR) (G) is the minimum weight w(f ) = Sigma(v is an element of V), ((G)) f(v) of any outer-independent Roman dominating function f of G. A vertex cover of a graph G is a set of vertices that covers all the edges of G. The minimum cardinality of a vertex cover is denoted by alpha(G). A graph G is a vertex cover Roman graph if gamma(oiR) (G) = 2 alpha(G). A constructive characterization of the vertex cover Roman trees is given in this article.
  • Others:

    Author, as appears in the article.: Cabrera Martinez, Abel; Kuziak, Dorota; Yero, Ismael G.;
    Department: Enginyeria Informàtica i Matemàtiques
    URV's Author/s: CABRERA MARTÍNEZ, ABEL / GONZÁLEZ YERO, ISMAEL
    Keywords: Vertex independence Vertex cover Trees Roman domination Outer-independent roman domination Domination
    Abstract: A Roman dominating function on a graph G = (V (G), E (G)) is a function f : V (G) -> {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The Roman dominating function f is an outer-independent Roman dominating function on G if the set of vertices labeled with zero under f is an independent set. The outer-independent Roman domination number gamma(oiR) (G) is the minimum weight w(f ) = Sigma(v is an element of V), ((G)) f(v) of any outer-independent Roman dominating function f of G. A vertex cover of a graph G is a set of vertices that covers all the edges of G. The minimum cardinality of a vertex cover is denoted by alpha(G). A graph G is a vertex cover Roman graph if gamma(oiR) (G) = 2 alpha(G). A constructive characterization of the vertex cover Roman trees is given in this article.
    Thematic Areas: Mathematics Matemática / probabilidade e estatística Discrete mathematics and combinatorics Ciência da computação Applied mathematics
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 1234-3099
    Author's mail: abel.cabrera@urv.cat
    Author identifier: 0000-0003-2806-4842
    Last page: 283
    Record's date: 2021-10-10
    Journal volume: 41
    Papper version: info:eu-repo/semantics/publishedVersion
    Link to the original source: https://www.dmgt.uz.zgora.pl/publish/bbl_view_pdf.php?ID=42024
    Papper original source: Discussiones Mathematicae Graph Theory. 41 (1): 267-283
    APA: Cabrera Martinez, Abel; Kuziak, Dorota; Yero, Ismael G.; (2021). A CONSTRUCTIVE CHARACTERIZATION OF VERTEX COVER ROMAN TREES. Discussiones Mathematicae Graph Theory, 41(1), 267-283. DOI: 10.7151/dmgt.2179
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Article's DOI: 10.7151/dmgt.2179
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2021
    First page: 267
    Publication Type: Journal Publications
  • Keywords:

    Applied Mathematics,Discrete Mathematics and Combinatorics,Mathematics
    Vertex independence
    Vertex cover
    Trees
    Roman domination
    Outer-independent roman domination
    Domination
    Mathematics
    Matemática / probabilidade e estatística
    Discrete mathematics and combinatorics
    Ciência da computação
    Applied mathematics
  • Documents:

  • Cerca a google

    Search to google scholar