Author, as appears in the article.: Cabrera Martinez, Abel; Kuziak, Dorota; Yero, Ismael G.;
Department: Enginyeria Informàtica i Matemàtiques
URV's Author/s: CABRERA MARTÍNEZ, ABEL / GONZÁLEZ YERO, ISMAEL
Keywords: Vertex independence Vertex cover Trees Roman domination Outer-independent roman domination Domination
Abstract: A Roman dominating function on a graph G = (V (G), E (G)) is a function f : V (G) -> {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The Roman dominating function f is an outer-independent Roman dominating function on G if the set of vertices labeled with zero under f is an independent set. The outer-independent Roman domination number gamma(oiR) (G) is the minimum weight w(f ) = Sigma(v is an element of V), ((G)) f(v) of any outer-independent Roman dominating function f of G. A vertex cover of a graph G is a set of vertices that covers all the edges of G. The minimum cardinality of a vertex cover is denoted by alpha(G). A graph G is a vertex cover Roman graph if gamma(oiR) (G) = 2 alpha(G). A constructive characterization of the vertex cover Roman trees is given in this article.
Thematic Areas: Mathematics Matemática / probabilidade e estatística Discrete mathematics and combinatorics Ciência da computação Applied mathematics
licence for use: https://creativecommons.org/licenses/by/3.0/es/
ISSN: 1234-3099
Author's mail: abel.cabrera@urv.cat
Author identifier: 0000-0003-2806-4842
Last page: 283
Record's date: 2021-10-10
Journal volume: 41
Papper version: info:eu-repo/semantics/publishedVersion
Papper original source: Discussiones Mathematicae Graph Theory. 41 (1): 267-283
APA: Cabrera Martinez, Abel; Kuziak, Dorota; Yero, Ismael G.; (2021). A CONSTRUCTIVE CHARACTERIZATION OF VERTEX COVER ROMAN TREES. Discussiones Mathematicae Graph Theory, 41(1), 267-283. DOI: 10.7151/dmgt.2179
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Entity: Universitat Rovira i Virgili
Journal publication year: 2021
First page: 267
Publication Type: Journal Publications